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Preface

This is a set of lecture notes which is intended as a support for students in my course ‘advanced sta-
tistical mechanics’. This is a typical graduate course on the subject, including some non-equilibrium
thermodynamics and statistical physics. The course has over the years been based on different books,
but the informed reader will recognise the structure of the book by Pathria (Statistical Mechanics,
1992) in the first part (equilibrium phenomena) and from several chapters of the book by Bellac,
Mortessange and Batrouni (Equilibrium and non-equilibrium statistical thermodynamics, 2004). An-
other important contribution is provided by the lecture notes by Hubert Knops for his statistical me-
chanics courses at Nijmegen. My lecture notes are thereforeby no means original, but they intend to
combine the parts of all the sources mentioned into a coherent and clear story.

However, this story does by no means qualify as a textbook, asit is too sketchy and superficial
for that purpose. It is merely intended as a support for students following my lecture course. I hope it
helps.

It should be noted that these notes do not fully cover the material of my course. I usually make
a selection of about 80 % of the material in these notes, and fill the remaining time with additional
topics, e.g. the exact solution of the Ising model in 2D or theepsilon-expansion. I intend to include
these topics into the course, together with a discussion of polymers and membranes.
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1

The statistical basis of Thermodynamics

This chapter reviews material that you should have seen before in one way or another. Therefore it is
kept very brief.

1.1 The macroscopic and the microscopic states

Notions of statistical mechanics:

• Extensive/intensive quantities:N, V are respectively the number of particles and the volume of
the system. We let both quantities go to infinity, while keeping the ration= N/V constant. In that
case, quantities which scale linearly withV (or N) are calledextensive, while quantities which do
not scale withV (or N) are calledintensive. The densityn = N/V is an example of an intensive
quantity.

• A macrostate is defined by values of the macroscopic parameters which can be controlled. For a
thermally and mechanically isolated system, these areN, E andV.

• A microstate is a particular state of a system which is consistent with the macrostate of that sys-
tem. For an isolated classical system, a microstate is a set of positions and momenta which are
consistent with the prescribed energyE, volumeV and particle numberN.

• The quantityΩ(N,V,T) is the number of microstates which are consistent with a particular macrostate.
This number may not be countable, but we shall see that this problem is only relevant in the clas-
sical description – in a proper quantum formulation, the number of states within a fixed energy
band is finite (for a finite volume).

1.2 Contact between statistics and thermodynamics

Two systems, 1 and 2 are in thermal contact. That is, their respective volumes and particle numbers
are fixed, but they can exchange energy. The total energy is fixed, however, to an amountE0. In
that case, thetotal system has a number of microstates which, for a particular partitioning of the total
energy(E1,E2), is given by

Ω(0)(N1,V1,E1,N2,V2,E2) = Ω(N1,V1,E1)Ω(N2,V2,E2),

with E = E1 +E2 constant. Because the particle numbers are very large, the quantity Ω(0) is sharply
peaked around its maximumas a function of E1. Therefore, themost likelyvalue ofE1 is equal tothe
average valueof E1. We find the most likely value by putting

∂ lnΩ(0)(N1,V1,E1,N2,V2,E2)

∂E1

1
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equal to 0. This leads to the condition for equilibrium:

∂ lnΩ(N1,V1,E1)

∂E1
=

∂ lnΩ(N1,V1,E2)

∂E2
.

The partial derivative of lnΩ with respect to energy is calledβ . We have

β = 1/(kBT) S= k lnΩ(N,V,E).

S is theentropyandT the temperature.

1.3 Further contact between statistics and thermodynamics

Similar to the foregoing analysis, we can study two systems which are not only in thermal equilibrium
(i.e. which can exchange thermal energy) but also in mechanical equilibrium (i.e. which can change
their volumesV1 andV2 while keeping the sumV1 +V2 = V0 constant). We then find that, in addition
to the temperature, the quantity

η =
P

kBT
=

∂ lnΩ(N,V,E)

∂V

is the same in both systems, i.e. pressure and temperature are the same in both.
If the systems can exchange particles (e.g. through a hole),then the quantity

ζ = − µ
kBT

=
∂ lnΩ(N,V,E)

∂N

is the same in both. The quantityµ is known as thechemical potential.
In fact, P andµ are thermodynamic quantities. We have derived relations between these and the

fundamental quantityΩ(N,V,E) which has a well-defined meaning in statistical physics (as do N, V
andE) by using the relation

S= kB lnΩ

and the thermodynamic relation
dE = TdS−PdV+ µdN.

The following relations can be derived straightforwardly:

P = −
(

∂E
∂V

)

N,S
; µ =

(

∂E
∂N

)

V,S
; T =

(

∂E
∂S

)

N,V
.

Here,(∂ . . ./∂γ)α ,β denotes a partial derivative with respect toγ at constantα andβ .
Finally, you should know the remaining most important thermodynamic quantities:

• Helmholtz free energy
A = E−TS;

• Gibbs free energy
G = A+PV = E−TS+PV = µN;

• Enthalpy
H = E +PV = G+TS;
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• Specific heat at constant volume

CV = T

(

∂S
∂T

)

N,V
=

(

∂E
∂T

)

N,V
;

• Specific heat at constant pressure:

CP = T

(

∂S
∂T

)

N,P
=

(

∂ (E +PV)

∂T

)

N,P
=

(

∂H
∂T

)

N,P
.

1.4 The ideal gas

If N particles in a volumeV do not interact, the number of ways the particles can be distributed in that
volume scales asVN, i.e.

Ω ∝ VN.

Therefore
P
T

= kB

(

∂ lnΩ(N,E,V)

∂V

)

N,E
= kB

N
V

.

For a consistent derivation of the entropy, we consider a particular example: a quantum mechanical
system consisting of particles within a cubic volumeV = L3 and with total energyE. The particles
have wavefunctions

ψ(x,y,z) =

(

2
L

)3/2

sin
(nxπx

L

)

sin
(nyπy

L

)

sin
(nzπz

L

)

.

with energy

E =
ℏ

2

2m
π2

L2

(

n2
x +n2

y +n2
z

)

=
h2

8mL2

(

n2
x +n2

y +n2
z

)

.

For N particles, we have the relation

E =
h2

8m

N

∑
j=1

(

n2
j,x +n2

j,y +n2
j,z

)

,

that is, the energy is the square of the distance of the appropriate point on the 3N dimensional grid.
The numberΩ(N,V,E) is the number of points on the surface of a sphere with radius 2mE/ℏ

2 in a
grid with unit grid constant in 3N dimensions. But it might occur that none of the grid points lies
precisely on the sphere (in fact, that is rather likely)! In order to obtain sensible physics, we therefore
consider the number of points in a spherical shell of radius 2mE/ℏ

2 and thickness much smaller than
the radius (but much larger than the grid constant). The number of points in such a grid is calledΓ.
The surface of a sphere of radiusr in 3N dimensions is given by

2π3N/2

(3N/2−1)!
r3N−1.

Multiplying this by δ r gives the volume of a spherical shell of thicknessδ r. We use the fact that each
grid point occupies a unit volume to obtain the number of gridpoints within the shell. In order to
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include only positive values for each of then j,α ,α = x,y,z, we must multiply this volume by a factor
2−3N. Using finally the fact thatN is large, we arrive at the following expression for the entropy:

S(N,V,E) = NkB ln

[

V
h3

(

4πmE
3N

)3/2
]

+
3
2

NkB.

We have neglected additional terms containing the thickness of the shell – it can be shown that these
are negligibly small in the thermodynamic limit. This expression can be inverted to yield the energy
as a function ofS, V andN:

E(S,V,N) =
3h2N

4πmV2/3
exp

(

2S
3NkB

−1

)

.

This equation, together withT−1 = (∂S/∂E)N,V , leads to the relations

E =
3
2

NkBT, CV =
3
2

NkB, CP =
5
2

NkB.

From the last two relations, we find for the ratio of the two specific heats

CP

CV
=

5
3
.

It can be verified that the change in entropy during anisothermalchange of a gas (i.e.N andT
constant) is

Sf −Si = NkB ln(Vf /Vi) .

Furthermore, during anadiabatic change(i.e. N andSconstant),

PVγ = const; TVγ−1 = const

with γ = 5/3. The work done by such an adiabatic process is given by

(dE)adiab= −PdV = −2E
3V

dV.

These relations are specific examples of more general thermodynamic ones.

1.5 The entropy of mixing and the Gibbs paradox

If we mix two gases which, before mixing, were at the same pressure and temperature, then it turns
out that after the mixing, the entropy has changed. This is tobe expected because, when the two
original gases consisted of different types of molecules, the entropy has increased tremendously by
the fact that both species now have a much larger volume at their disposal. This difference is called
the mixing entropy. A straightforward analysis, using the expressionfor the entropy derived in the
previous section, leads to a mixing entropy∆S:

∆S= kB

[

N1 ln
V1 +V2

V1
+N2 ln

V1 +V2

V2

]

.

Now consider the case where the two gases contain the same kind of molecules. According to
quantum mechanics, two configurations obtained by interchanging the particles must be considered



5

as being identical. In that case, the mixing should not influence the entropy, so the above result
for the mixing entropy cannot be correct. This paradox is known as theGibbs paradox. It is a
result of neglecting the indistinguishability. A more careful rederivation of the entropy, taking the
indistinguishability of the particles into account, leadsto the famousSackur-Tetrode formula:

S(N,V,E) = NkB ln

(

V
N

)

+
3
2

NkB

{

5
3

+ ln

(

2πmkBT
h2

)}

.

This formula is derived by multiplyingΩ (the number of states) by 1/N! in order to account for
the indistinguishability in case alle particles occupy different quantum states. This expression for
the entropy leads to∆S= 0 for identical particles. The expression above for∆S remains valid for
non-identical particles.

Note that the process in which the wall is removed, changes the entropy, but does not correspond
to any heat transfer, nor does it involve any work. The fact that the entropy changes without heat
transfer is allowed, as the second law of thermodynamics states that∆Q≤ T∆S. The equals-sign only
holds for reversible processes.

1.6 The “correct” enumeration of the microstates

This section argues how and why the indistinguishability ofthe particles should be included in the
derivation of the entropy. For a system withn1 particles in quantum state 1,n2 particles in state 2
etcetera, it boils down to dividing the total number of states calculated for distinguishable particles,
by

N!
n1!n2! . . .

.

In deriving the Sackur–Tetrode formula, we have taken theni to be either 0 or 1.
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Elements of ensemble theory

2.1 Phase space of a classical system

Thephase spaceis the space of possible values of the generalised coordinates and canonical momenta
of the system. Remember the generalised coordinates can be any coordinates which parametrise the
accessible coordinate space within perhaps some given constraints. In our case, we shall most often
be dealing with a volume within which the particles must move, so the coordinates are simply the
variablesr i (i labels the particles) which are constrained to lie withinV. The motion of the particles
is determined by the Lagrangian, which is a function of the generalised coordinatesq j and their
derivatives with respect to time ˙q j :

L = L(q j , q̇ j , t).

The equations of motion are the Euler-Lagrange equations:

d
dt

∂L
∂ q̇ j

=
∂L
∂q j

.

The canonical momenta are defined as

p j = − ∂L
∂ q̇ j

and these can be used to construct the Hamiltonian:

H(p j ,q j) = ∑
j

p j q̇ j −L.

Note thatH is a function of thep j andq j , but not of the ˙q j , which nevertheless occur in the definition
of H. In fact, the ˙q j must be formulated in terms ofq j and p j by inversion of the expression giving
the p j . For example, for a particle in 3D, we have

p j = mq̇ j ,

for which q̇ j can very easily be written in terms of thep j .
The Euler-Lagrange equations of motion can now be formulated in terms of the Hamiltonian:

q̇ j =
∂H
∂ p j

;

ṗ j = − ∂H
∂q j

.

6
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These equations are completely equivalent to the Euler-Lagrange equations. In fact, the latter are
second order differential equations with respect to time, which are here reformulated as twice as many
first-order differential equations. The Hamiltonian equations clearly give a recipe for constructing the
time evolution in phase space given its original configuration. The latter is a point in phase space,
from which a dynamical trajectory starts.

In statistical mechanics, we are interested in the probability to find a system in a particular point
(q, p) ((q, p) is shorthand for all the coordinates). This probability is also called thedensity func-
tion ρ(q, p; t). Any physical quantity is defined in terms of the dynamical variablesp j andq j . The
expectation value of such a quantityf can be written as

〈 f 〉 =

∫

f (q, p)ρ(q, p; t) d3N p d3Nq
∫

ρ(q, p; t) d3N p d3Nq
,

where the denominator is necessary in the case whereρ is not normalised.

2.2 Liouville’s theorem and its consequences

We are not interested in the individual dynamical trajectories of a system. Rather we want to know
the probabilities to find our system in the points of phase space, i.e. the density functionρ , so that we
can evaluate expectation values of physical quantities. Liouville’s theorem is about the change in the
course of time of the density function. Suppose we stay at some point(q, p) in phase space. At that
time, the change of the density is

∂ρ
∂ t

.

The density in some volumeω changes as
∫

ω

∂ρ
∂ t

dω

(dω is shorthand ford3N p d3Nq). This change can only be caused by trajectories starting within ω and
moving out of it, or trajectories starting outsideω and moving in. The flux of phase space points is
given byρv, wherev is shorthand for the vector(ṗ, q̇): it is the velocity of the points in phase space.

The number of points leaving and entering the system per unitof time can be evaluated as
∫

σ
ρv · n̂ dσ ,

whereσ is the boundary ofω . Using Gauss’ theorem, this can be written as a volume integral:
∫

σ
div(ρv) dω .

The flux of points across the boundary is the only cause of change in the density insideω , as there are
no ‘sources’ or ‘sinks’ (trajectories do not disappear or appear). From these considerations, and from
the fact that the shape ofω can be arbitrary, we see that the following relation must hold:

∂ρ
∂ t

+div(ρv) = 0.

We now work out the second term:

∂ρ
∂ t

+∑
j

(

∂ρ
∂q j

q̇ j +
∂ρ
∂ p j

ṗ j

)

+ ρ ∑
j

(

∂ q̇ j

∂q j
+

∂ ṗ j

∂ p j

)

= 0.
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Using the equations of motion, the last group of terms is seento vanish, and we are left with

dρ
dt

=
∂ρ
∂ t

+∑
j

(

∂ρ
∂q j

q̇ j +
∂ρ
∂ p j

ṗ j

)

=
∂ρ
∂ t

+{ρ ,H} = 0,

where the expression on the left hand side can also be writtenasdρ(t)/dt. It is useful to emphasise
the difference between∂ρ/∂ t anddρ/dt. The former is the change of the density function at a fixed
point in phase space, whereas the latter is the change of the density function as seen by an observer
moving along with the trajectory of the system. The last equation expresses the fact that such an
observer does not see a change in the density. This now is Liouville’s theorem.

The brackets{,} are called thePoisson brackets. They are for classical mechanics what commu-
tators are for quantum mechanics. In fact, the resulting equations for the classical density function
and the quantum density operator in Heisenberg representation can be compared:

dρ
dt

=
∂ρ
∂ t

+{ρ ,H} (class.);

dρ
dt

=
∂ρ
∂ t

− i
ℏ

[ρ ,H] (quantum).

The intimate relation between classical and quantum mechanics is helpful in formulating statistical
mechanics.

We now define equilibrium as the condition that∂ρ/∂ t be equal to 0, so the question arises how
this condition can be satisfied. One possibility is to have a density function which is constant in time
and in phase space so that both∂ρ/∂ t and[ρ ,H] vanish. This is however not physically acceptable,
as infinite momenta are allowed in that case. Another possibility is to haveρ not depending explicitly
on time (this is mostly the case – it means that there is no external, time-dependent field) but being a
function ofH. This is usually assumed. It implies that for some particular value ofH, every point in
phase space compliant with that value, occurs equally likely. This is the famouspostulate of equal a
priori probabilities.1

2.3 The microcanonical ensemble

Any particular choice for the density function is called anensemble. This refers to the idea of having
a large collection of independent systems, all having the same values for their controllable external
parameters (energy, volume, particle number etcetera), but (in general) different microstates. The
microstates all occur with a probability given by the density function – therefore, determining the
average of a physical quantity over this ensemble of systems, corresponds to the expression given at
the end of section 2.1.

For an isolated system, the energy is fixed, so we can write

ρ = ρ(H) = δ [H(q, p)−E].

Obviously, there are some mathematical difficulties involved in using a delta-function – one may
formulate this as a smooth function with a variable width which can be shrunk to zero.

The density functionρ gives us the probability that we find a system in a state(q, p), and we
can use this in order to find the average〈 f 〉 as described above. This average is called theensemble

1Parthia formulates this a bit differently on page 34, but I amnot very happy with his description.
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average. This is equal to the time average of the quantityf in the stationary limit. This result is called
the fundamental postulate of statistical mechanics.

Obviously, the phase space volume accessible to the system is proportional to the number of
microstates accessible to the system. If we consider phase space as continuous (as should be done in
classical mechanics), however, that number is always infinite (irrespective of the number of particles).
In quantum mechanics we do not have this problem, as the states are given as wavefunctions and not
as points(q, p). The connection between the two can be made by considering wavepackets which are
localised in bothq-space andp-space. In view of the Heisenberg uncertainty relation, these packets
occupy a volume∼ h per dimension in phase space. Therefore, it appears that there is a fundamental
volumeh3N which is occupied by quantum state of the system. Therefore,the relation between the
number of statesΓ and the occupied volumeω in phase space is given by

Γ = ω/h3N.

For the microcanonical ensemble,Γ is the volume of a thin shell in phase space where the energy lies
betweenE−∆/2 andE + ∆/2. We call this shell∆ω .

2.4 Examples

First we consider the case ofN non-interacting point particles, that is an ideal classical gas. The
number of states in the energy shell∆ω is given by:

∆Γ =

∫

∆ω
d3N p d3Nq.

As the potential vanishes, the integral overq yieldsVN. The integral over the momenta can be eval-
uated using the results for anN-dimensional shell used in section 1.4, and we find for the number of
states within the shell:

∆Γ =
1

(3N/2−1)!

[

V
h3 (2πmE)3/2

]N ∆E
E

.

In order to take the indistinguishability of the particles into account, we must divide this number by
N!. The entropy can then be calculated as above, resulting in the Sackur–Tetrode formula.

Our general formalism also allows to evaluate the entropy ofa single particle. As an example, we
consider the harmonic oscillator:

H =
p2

2m
+

k
2

q2

From this equation, the points with constant energy are seento lie on ellipses. In order to find the
volume (in our 2D phase space this is a surface area), we can scale the coordinates in order to map the
ellipse onto a circle:

q→ q
√

2E/mω
, p→ p√

2mE

with, as usual,ω =
√

k/m. Do not confuse thisω (angular frequency) with that representing the
volume in phase space. Then the volume of the ellipse can be found to be

∆Γ =
2π∆
ω

.
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The canonical ensemble

3.1 Equilibrium between a system and a heat reservoir

Suppose we have a large, isolated system which we divide up into a very small one and the rest.
The small subsystem can exchange energy with the rest of the system, but its volume and number of
particles is constant. Consider a stater of the small subsystem with energyEr . How likely is it to find
the subsystem in this state? That depends on the number of states which are accessible to the rest of
the system (this is called theheat bath), and this number is given asΩ(E−Er), whereE is the energy
of the total system. Therefore, the multiplicity of the state with energyEr is

Pr = Ω(E−Er).

We know thatΩ of the heat bath is given as exp(S/kB). We then have: use

Pr = exp[S(E−Er)/kB] = exp

{[

S(E)− ∂S(E)

∂E
Er

]

/kB

}

= exp

{[

S(E)− Er

T

]

/kB

}

,

so that we obtain
Pr = P(Er) ∝ exp(−Er/kBT) = e−βEr

with β = 1/kBT. Pr is theBoltzmann distribution function.
As the subsystem is very small in comparison with the total system, its temperature will be deter-

mined by the latter. Therefore the temperature of the subsystem will be a control parameter, just as
the number of particlesN and its volumeV. If we consider a set of systems which are all prepared
with the sameN, V andT, and with energies distributed according to the Boltzmann factor, we speak
of a canonical, or (N, V, T) ensemble.

3.2 A system in the canonical ensemble

A more formal approach can be taken in the calculation of the canonical and other distributions that we
shall meet hereafter, which is based on a very general definition of entropy. In a quantum mechanical
formulation, this entropy is formulated terms of the quantum density operator as

S= −kBTr ρ lnρ .

Writing
ρ = ∑

r
|r〉Pr 〈r|

leads to the same expression as above

S= −kB ∑
r

Pr lnPr .

10



11

The basic postulate now is that, given expectation values for external parameters, the density matrix
will assume a form which maximises the entropy defined this way.

This expression for the entropy is often used in informationtheory. Furthermore, it turns out that
expressions for the entropy that can be derived from more physical arguments are all compatible with
this general expression.

Let us first note that the(NVE) ensemble is the most natural one to define in classical or quantum
mechanics: the number of degrees of freedom is well-defined (via the particle numberN) and the
potential does not explicitly depend on time (the volume is fixed, i.e. the walls do not move). Then,
the Hamiltonian is conserved and it can be identified with theenergy. Now suppose that there is
a numberM of states with the prescribed energy. We must find the distribution Pr which makesS
stationary under the constraint thatPr is normalised. This is done using a Lagrange multiplierλ . We
define

F = S−λ
M

∑
r=1

Pr

and now requireF to be stationary:

∂F
∂Pr

= −kB(1+ lnPr)−λ

This leads to a family of solutions

Pr = exp

(

−kB + λ
kB

)

,

parametrised byλ . ThePr are thus all equal. We must now adjustλ such as to satisfy the constraint
thatPr be normalised. This then leads to

Pr =
1
M

.

We see that for the microcanonical ensemble, the distribution which maximises the entropy is the one
in which each state has the same probability of occurrence.

Instead of requiring that each of the parametersN, V or E be fixed, we may relax any of these
conditions and require theexpectation valueto assume a certain value rather than the stronger condi-
tion that the parametermay only assumea certain value. We shall work this out for the energy. In the
context of quantum mechanics, this is a bit tricky as we must calculate the variation of an operator.
However, if we assume that the density operator can be written in the form

ρ = ∑
r
|r〉Pr 〈r|

with |r〉 being eigenstates of the Hamiltonian, the solution of the problem is similar to that of the
classical case.

We now have an additional constraint, that is,

〈E〉= ∑
r

PrEr

is given. HereEr is the energy of the stater. We now havetwo Lagrange multipliers, one for the
energy (which we callkBβ ) and one (againλ ) for the normalisation:

F = S−λ ∑
r

Pr −kBβ ∑
r

PrEr .
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Following the same procedure as above, we find

Pr =
1

Qλ
exp(−βEr).

Q – the partition function – is defined in terms of the multiplier λ – it serves merely to normalise the
probability distribution.

The Lagrange parameterβ which we can identify with 1/kBT serves as the parameter which can
be tuned in order to adjust the expectation value of the energy to the required value. If we relax the
particle number but fix its expectation value, we obtain

Pr =
1

Zλ
exp(−βEr −σN).

whereσ can be identified with−β µ , µ is the chemical potential.
Let us analyse the canonical partition function a bit further. The expectation value of the energy

can be determined as

〈E〉 = − ∂
∂β

lnQ.

UsingPr = exp(−βEr)/Q, we can write the entropy as

S= −kB ∑
r

Pr lnPr = −kB ∑
r

Pr [− lnQ−βEr ] = kB lnQ−kBβ
∂

∂β
lnQ.

The transformation fromS to lnQ which leads to this type of relation is known as theLegendere
transformation.

Returning to the derivation of the canonical distribution function, we note that the function we
have maximised can be written as

S−λ −T 〈E〉
where we have used∑Pr = 1 and∑r PrEr = 〈E〉. Now we write this expression (disregarding the
constantλ ) as

−A
T

= −E−TS
T

.

The quantityA = E−TS is called the (Helmholtz) free energy. We see that this quantity was min-
imised as a function ofPr . We have:

The Boltzmann distribution is the distribution which minimises the Helmholtz free energy.

3.3 Physical significance of the various statistical quantities in the canonical ensemble

Let us first calculate the energy:

U = 〈E〉 =
∑r Ere−βEr

∑r e−βEr
.

The denominator ensures proper normalisation, in particular it ensures that the average value of 1 is
equal to 1.

Looking at the above equation, we see that we can writeU as

U = 〈E〉= − ∂
∂β

ln∑
r

e−βEr .
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It is useful to define
QN = ∑

r
e−βEr ;

Q is called thepartition function. Let us relate the quantities we have seen so far to thermodynamics.
For a system at constantV, N andT, we know for the Helmholtz free energyA = E−TS, that

dA= dU−TdS−SdT= −SdT−PdV+ µdN.

From this, we have:

S= −
(

∂A
∂T

)

N,V
; P = −

(

∂A
∂V

)

N,T
; µ =

(

∂A
∂N

)

T,V
.

From the first relation, we have:

U = A+TS= A−T

(

∂A
∂T

)

N,V
= −T2

[

∂
∂T

(

A
T

)]

N,V
=

[

∂ (A/T)

∂ (1/T)

]

N,V
,

from which we can infer that
A = −kBT lnQN.

By taking the temperature derivative ofU we obtain the expression for the specific heat:

CV =

(

∂U
∂T

)

N,V
= −T2

(

∂ 2A
∂T2

)

N,V
.

Moreover, from
dA= −SdT−PdV+ µdN.

(see above), we see that if we keep the volume and the particlenumber constant, we have

dA= −PdV,

that is, the change in free energy is completely determined by the work done by the system. The
Hemholtz free energy represents the work which can be done bya closed, isothermal system.

We have seen that the probabilityPr with which a configuration with energyEr occurs, is given
by theBoltzmann factor:

Pr =
e−Er/(kBT)

QN
.

The entropy can be calculated as

S= −
(

∂A
∂T

)

N,V
=

∂ (kBT lnQN)

∂T
= kB lnQN − U

T
.

We now replaceU , which is the expectation value ofEr , by the expectation value of−kBT ln(QNPr):

S= kB lnQN −kB 〈ln(QNPr)〉 = −kB 〈lnPr〉 = −kB ∑
r

Pr lnPr .

From this relation, it follows that the entropy vanishes at zero temperature (‘third law of thermody-
namics’). Furthermore, this relation has become the starting point for studying information theory,
where entropy is a measure for the reliability of communication. This is obviously the same entropy
as was introduced in the previous section.
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3.4 Alternative expressions for the partition function

It is very important to realise that, when evaluating the sums overstates r, we should not confuse
those states with their energies. For a system with a strictly discrete spectrum, the energiesEi might
occur with a multiplicity (degeneracy)gi . In that case, when we evaluate the sum over some energy-
dependent quantity, we have

∑
r
→ ∑

i
gi .

In fact, the probability of having an energyEi is given by

Pi =
gie−βEi

∑i gie−βEi
.

In practice, the energy is usually continuous or almost continuous. In that case,gi is replaced by
thedensity of states g(E). This quantity is defined as follows:

Number of quantum states with energy betweenE andE +dE = g(E)dE.

In that case

P(E) =
g(E)e−βE

∫ ∞
−∞ g(E)e−βEdE

.

3.5 Classical systems

We now show how to evaluate expectation values for a system consisting of interacting point particles.
In the previous chapter it was argued that the sum over the available quantum states can be replaced by
a sum over e volumeω in phase space, provided we divide by the ‘unit phase space volume’ h3N and
by N! in order to avoid over-counting of indistinguishable configurations obtained from each other by
particle permutation. Therefore we have

QN =
1

h3NN!

∫

e−βH(q,p)d3Nqd3N p,

where

H(q, p) =
N

∑
i=1

p2
i

2m
+V(q1, . . . ,q3N).

For the ideal gas,V ≡ 0. Note that thepi are vectors in 3D.
The expression forQN looks quite complicated, but the integral over the momenta can be evaluated

analytically! The reason is that the exponential can be written as a product and the integral factorises
into 3N Gaussian integrals:

∫

e−β ∑i p2
i /(2m)d3N p =

∫

e−β p2
1/(2m)d3p1

∫

e−β p2
2/(2m)d3p2 . . .

∫

e−β p2
N/(2m)d3pN.

The integral over one particle then factorises into one overpx, one overpy and one overpz. Now we
use the Gaussian integral result:

∫ ∞

−∞
e−αx2

dx=

√

π
α

,



15

in order to obtain:

QN =
1
N!

[

(2πmkBT)(3/2)

h3

]N
∫

e−βVd3Nq.

For an ideal gas,V = 0 and we can evaluate the remaining integral: it yieldsVN (V is the volume
of the system – do not confuse it with the potential!). Therefore, the partition function of the ideal gas
is found as:

QN =
1
N!

[

V
(2πmkBT)(3/2)

h3

]N

3.6 Energy fluctuations in the canonical ensemble: correspondence with the
micro-canonical ensemble

In the canonical ensemble, the energy can take on any possible value between the ground state and
infinity. The actual probability with which a particular value of the energy occurs is proportional to

P(E) ∝ g(E)e−E/kT.

The prefactorg(E) is the density of states – it is proportional to theΩ(E), i.e. the number of mi-
crostates at energyE. In general, we find that this quantity is a very strongly increasing function
of the energy, whereas the Boltzmann function exp(−E/kBT) stronglydecreaseswith energy. The
result is that the probability distribution of the energy isvery sharply peaked around its mean value
U = 〈E〉. To show that the energy is indeed sharply peaked aroundU , we calculate the fluctuation.
From statistics, we know that the width of the distribution is given by

(∆E)2 =
〈

E2〉−〈E〉2 .

From

U = 〈E〉 =
∑r Ere−βEr

∑r e−βEr

where, as usual,β = 1/kBT, we see that

∂U
∂β

=

(

∑r Ere−βEr

∑r e−βEr

)2

− ∑r E2
r e−βEr

∑r e−βEr
= −(∆E)2.

The quantity∂U/∂β is equal to

∂U
∂β

= kBT2∂U
∂T

= kBT2CV .

Realising thatCV is an extensive quantity, which scales linearly withN, we therefore have:

∆E
U

=

√

kBT2CV

U
∼ 1/

√
N.

In the thermodynamic limit (N → ∞), we see that the relative width becomes very small. Therefore,
we see that the energy, which is allowed to vary at will, turnsout to be almost constant. Therefore, we
expect the physics of the system to be almost the same of that in the microcanonical ensemble (where
the energyis actually constant).

This result is usually referred to as the ‘equivalence of ensembles’.
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3.7 Two theorems – the ‘equipartition’ and the ‘virial’

The analysis of the classical gas in section 3.5 allows us to calculate the expectation value of the
kinetic energyT. This is done as follows.

〈T〉 =

∫

∑i
p2

i
2m exp

[

−
(

∑i
p2

i
2m +V(R)

)

/(kBT)
]

d3NPd3NR
∫

exp
[

−
(

∑i
p2

i
2m +V(R)

)

/(kBT)
]

d3NPd3NR
.

All sums overi run from 1 toN; RandP represent all positions and momenta.
Obviously, the contributions to the result from each momentum coordinate of each individual par-

ticle are identical, and they can be evaluated using the samefactorisation which led to the evaluation
of the partition function of the ideal gas (the integrals over the coordinatesRcancel). We obtain

〈T〉 = 3N

∫ p2

2m exp[−p2/(2mkBT)]dp
∫

exp[−p2/(2mkBT)]dp
=

3NkBT
2

.

This result is known as theequipartition theorem: it tells us that the kinetic energy for each degree of
freedom iskBT/2. In the book, this theorem is proven more generally.

The second theorem gives us an expression for the pressureP (the derivation given here is some-
what different from that of the book). We know that

P = −
(

∂A
∂V

)

N,T

(see above). Now we replaceA by −kBT lnQN:

P = kBT
1

QN

∂QN

∂V
.

First we realise that the integral over the momenta is volume-independent – therefore only the part

Q̃N =

∫

exp[−U(r1, . . . , rn)/(kBT)]d3R

is to be considered (note that we call the potential functionU – this is to avoid confusion with the
volume V).

To evaluate the volume-dependence of this object, we write for the coordinatesr i of the particles:

r i = V1/3si ;

that is, the coordinatessi are simply rescaled in such a way that they occupy a volume of the same
shape as ther i , but everything is rescaled to a unit volume. Every configuration in a volumeV has a
one-to-one correspondence to a configuration of thesi . Therefore we can write:

∫

exp[−U(r1, . . . , rn)/(kBT)]d3NR= VN
∫

exp[−U(V1/3s1, . . . ,V
1/3sN)/(kBT)]d3NS

where the prefactor arises because of the change of integration variables.
Now, the derivative with respect toV can be evaluated:

∂ Q̃N

∂V
= NVN−1Q̃N −V−2/3

3kBT

∫

∑
i

si ·∇iU exp[−U(V1/3s1, . . . ,V
1/3sN)/(kBT)]d3NS.
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Collecting all the terms we obtain

PV
kBTN

= 1− 1
3NkBT

〈

N

∑
i=1

r i ·
∂U
∂ r i

〉

.

We see that forU = 0 we havePV = NkBT, which is well known for the ideal gas.
Very often interaction potentials are modelled as a sum overall particle pairs:

U(r1, . . . , rN) =
N

∑
i, j; j>i

u
(
∣

∣r i − r j

∣

∣

)

.

In that case, the rightmost term in the virial theorem can be rewritten as
〈

N

∑
i=1

r i ·
∂U
∂ r i

〉

=
N(N−1)

2

〈

r
∂u(r)

∂ r

〉

=
N(N−1)

2

∫ ∞

0
r
du
dr

g(|r1− r2|)d3r1d3r2,

where we have introduced thepair correlation function, g(r), which gives the probability of finding a
particle pair at separationr = |r2− r1|. The formal definition ofg(r) is

g(r) = V2
∫

exp[−βU(r1, r2, r3, . . . , rN)]d3r3 . . .d3rN

QN
.

Because the particles are identical, we can take any pair instead of 1 and 2. For large separationr,
g(r) tends to 1. The virial theorem can be reformulated in terms ofthe pair correlation function:

PV
NkBT

= 1− 2πN
3VkBT

∫ ∞

0
g(r)

∂u(r)
∂ r

r3dr.

3.8 A system of classical harmonic oscillators

Now we consider a classical system with an Hamiltonian givenby

H =
N

∑
i=1

p2
i

2m
+

mω2

2
q2

i ,N.

For this system, the partition function can be evaluated analytically as the Hamiltonian is a quadratic
function of both the momenta and the coordinates. The calculation therefore proceeds analogous to
that for the ideal gas where the Hamiltonian is a quadratic function of the momenta only. The result
for oscillator system is:

QN =
1

(βℏω)N ,

where we have assumed that the oscillators are distinguishable. The free energy now follows as

A = −kBT lnQN = NkBT ln

(

ℏω
kBT

)

.
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From this we find

µ =

(

∂A
∂N

)

V,T
= kBT ln

(

ℏω
kBT

)

;

P = −
(

∂A
∂V

)

N,T
= 0;

S= −
(

∂A
∂T

)

N,V
= NkB

[

ln

(

kBT
ℏω

)

+1

]

;

U =

[

∂ (A/T)

∂ (1/T)

]

N,V
= NkBT.

From the last equation, we find
CV = NkB = CP.

The fact thatU = NkBT is in agreement with the equipartition theorem as the Hamiltonian hastwo
independent quadratic terms (forq and p) instead of only one. It shows that for harmonic oscillators,
the energy is equally divided over the potential and the kinetic energies.

Next we consider a collection of quantum harmonic oscillators in the canonical ensemble. This is
simpler to evaluate than the classical case. The states for oscillator numberi are labeled byni , hence

QN = ∑
{ni}

e−βℏω ∑i(ni+1/2),

where∑{ni} denotes a sum over all possible values of all numbersni . This partition function factorises
in a way similar to the classical system, and we obtain:

QN =

(

∑
n

e−βℏω(n+1/2)

)N

=

(

e−βℏω/2

1−e−βℏω

)N

From the partition function we obtain, similar to the classical case:

A = N ln

[

ℏω
2

+kBT ln
(

1−e−βℏω
)

]

.

And, from this,

µ = A/N;

P = 0;

S= NkB

[

βℏω
e−βℏω −1

− ln
(

1−e−βℏω
)

]

.

U = N

[

ℏω
2

+
ℏω

eβℏω −1

]

.

And, finally

CV = CP = NkB(βℏω)2 eβℏω
(

eβℏω −1
)2 .

Interestingly, the quantum harmonic oscillator does not obey equipartition: we see that only the
first term in the expression for the energy is in accordance with that theorem – the second term gives
a positive deviation from the equipartition result.
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Figure 3.1: The Langevin function. The dashed line is the graph ofx/3.

3.9 The statistics of paramagnetism

Consider a system consisting of a set of magnetic moments. Each moment interacts with a magnetic
field H, but the interaction between the moments is neglected. In that case we can consider again a
system of only one magnetic moment and construct the partition function forN moments by raising
that for a single moment to theN-th power.

The interaction Hamiltonian is given by

H = −µµµ ·H.

Note the difference between the HamiltonianH and the fieldH. Without loss of generality we can
takeH along thez-direction so that

H = −µH cosϑ ,

whereϑ is the angle between the moment and thez-axis.
The partition function can now be evaluated:

Q1 =

∫

eβ µH cosϑ sinϑdϑdϕ = 4π
sinh(β µH)

β µH
.

We can also calculate the average value of the magnetic moment:

µz =

∫ 2π
0

∫ π
0 µeβ µH cosϑ cosϑ sinϑdϑdϕ
∫ 2π

0

∫ π
0 eβ µH cosϑ sinϑdϑdϕ

= µ
[

coth(β µH)− 1
β µH

]

= µL(β µH),

whereL(x) is theLangevin function. It is shown in figure 3.1.
For high temperatures, that is, for small values ofx, the Langevin function behaves asL(x) ∼ x/3

(see figure 3.1), so we have

M =
µ2

3kBT
H.

Themagnetic susceptibilityis defined as

χ =
∂M
∂H
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therefore has the form

χ =
C
T

whereC is the so-calledCurie constant. This relation is known as theCurie lawof paramagnetism.
This law is found in nature for systems with high values of theangular momentum quantum number
l , in which case the behaviour of the system approaches classical behaviour.

In the book, the situation of real quantum systems (with smaller values ofl ) is discussed further.

3.10 Thermodynamics of magnetic systems: negative temperature

The case of paramagnetics= 1/2 spins is the easiest example of a quantum magnetic system. In that
case, the spins assume values eitherℏ/2 or −ℏ/2 when they are measured along an arbitrary axis.
If we apply a magnetic fieldH, there are therefore two possible values of the energy for these two
orientations – we call these energiesε and−ε . Therefore we immediately find that the partition sum
is given as:

QN(β ) =
(

e−βε +eβε
)N

= [2cosh(βε)]N .

The fact that the term in brackets can simply be raised to theN-th power is a result of the fact that the
spins do not interact mutually.

In the usual way we obtain the thermodynamic properties fromthe partition function:

A = −NkBT ln[2cosh(ε/kBT)];

S= −
(

∂A
∂T

)

H
= NkB {ln [2cosh(βε)]−βε tanh(βε)} ;

U = A+TS= −Nε tanh(βε)

M = −
(

∂A
∂H

)

T
= NµB tanh(βε),

whereµB is the Bohr magneton: the coupling constant between the spinand the external field, i.e.

ε = µBH.

Finally we have

CH =

(

∂U
∂T

)

H
= NkB(βε)2/cosh2(βε).

We see thatU = −MH, as could be expected. In the next few figures we show the temperature
dependence ofS, U , M andCH .

These graphs show several interesting features. The entropy vanishes for small temperature as
it should; this shows that for low temperatures nearly all spins are in line with the field, so that the
entropy is low. Also, the energy per spin is about−ε which is in agreement with this picture.

When we increase the temperature, more and more spins flip over and the entropy and energy
increase. There will be a particularly strong increase in the entropy nearkBT = ε as in that region
the thermal energy is sufficiently strong for flipping the spins over. For high temperatures the spins
assume more or less random orientations, and the entropy will approach a constant. The graph of the
magnetisation is also easily explained now. The specific heat shows a maximum nearkBT = ε for the
reason just explained.
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Figure 3.2: Entropy versus temperature
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Figure 3.3: Energy versus temperature

A striking feature of the energy graph is that it does not approach its maximum value, which is
reached when all spins would beantiparallel to the field. In fact, when the energy is positive, the
entropy will decreasewith energy. This can be used in an experimental technique called magnetic
cooling. In this technique, a strong magnetic field is suddenly reversed in order to bring the spins
in a configuration where the majority is antiparallel to the field. In that case, the temperature is
negative, as the entropy decreases with energy and 1/T = ∂S/∂E. This is not in contradiction with
the laws of thermodynamics, as the system is far from equilibrium. In order to reach equilibrium,
the temperature will return to positive values, and it therefore has to pass through absolute zero. The
system is therefore extremely cold for some time.
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Figure 3.4: Magnetisation versus temperature
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Figure 3.5: Specific heat versus temperature
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The grand canonical ensemble

4.1 Equilibrium between a system and a particle-energy reservoir

We derive the grand canonical distribution function (density function) in a way analogous to that of
the canonical ensemble. We consider again a large, isolatedsystem in which we define a subsystem,
which can exchange not only energy, but also particles with the remainder of the large system (the
remainder is again called a bath). Now we consider a statesof the subsystem consisting ofNr particles
and an energyEs. Just as in the derivation of the canonical ensemble, we notethat the probability of
occurrence of this state is proportional to the number of possible states of the bath:

Pr,s ∝ Ω(E−Es,N−Nr).

Writing Ω = exp(S/kB) and realising that

∂S
∂E

=
1
T

∂S
∂N

= −µ
T

,

we obtain
Pr,s ∝ eS(E−Es,N−Nr )/kB ∝ e−βEs+β µNr .

V
E, N

Figure 4.1: The grand canonical ensemble. The system under consideration (dashed square) can exchange
energy and particles with its surroundings.
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We see that the probability distribution is that of the canonical ensemble multiplied by an extra factor
exp(β µN) and summed overN. The required normalisation factor is

∞

∑
N=0

eβ µN ∑
s

Ese
−βEs ≡ Z .

The quantityZ is called thegrand canonicalor grand partition function.

4.2 Formal derivation of the grand canonical ensemble

Using the principle of maximum entropy, we can again derive the probability for the grand canonical
ensemble. We do this by requiring that theexpectationvalues ofE andN are given. Hence we must
maximise the entropy

S= −kB ∑
N

∑
r

pr(N) ln pr(N)

under the condition that

∑
N

∑
r

pr(N)Er(N) = 〈E〉 = U

is given and that

∑
N

N∑
r

pr(N) = 〈N〉 .

This then leads to a Lagrange function

F = S−λ ∑
N

∑
r

pr(N)−kBβ ∑
N

∑
r

pr(N)Er(N)−kBβ µ ∑
N

N∑
r

pr(N).

Taking the derivative with respect topr(N) leads to

−kB ln pr(N)−kB−λ −kBβEr(N)+kBβ µN = 0,

leading to the distribution

pr(N) =
e−βEr (N)+β µN

∑N ∑r e−βEr(N)+β µN
,

as found in the previous section. The denominator in the lastexpression is called thegrand canonical
partition function

Z = ∑
N

∑
r

e−βEr (N)+β µN.

4.3 Physical significance of the various statistical quantities

We can relate the thermodynamic quantities using the grand canonical distribution function. First of
all, we note that the grand partition function can be writtenas

Z =
∞

∑
N=0

eβ µNQN(N,V,T)

whereQN(N,V,T) is the canonical partition function, which is related to theHelmholtz free energyA
as

QN = e−A/kBT .
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The grand canoncial partition function can thus be written as

Z =
∞

∑
N=0

eβ(µN−A).

Just as in the case of the energy in the canonical ensemble, the summandeβ(µN−A) will be very sharply
peaked near the equilibrium valueN of N, so that we may replace the sum by the summand at its peak
value. In this way we find

kBT lnZ = µN−A = µN−U +TS.

Using the Euler relation from thermodynamics,

U = ST−PV+ µN,

we find
kBT lnZ = PV ≡ kBTq.

Note that we have been a bit sloppy in replacing the sum overN by its maximum value – we should
have included a width here. However, this only leads to an additive constant in the relation between
µN−A andkBT lnZ , which can be fixed by noting that forN = 0, the right hand side should vanish,
and the result obtained turns out to be correct.

Let us now calculate the average value ofN using the density function:

N =
∑∞

N=0 Neβ µNe−A/kBT

∑∞
N=0 eβ µNe−A/kBT

= kBT

(

∂q(µ ,V,T)

∂ µ

)

V,T
.

Instead of the chemical potentialµ , often the parameterz= exp(β µ) is used. The parameterz is
called thefugacity. The energy can be obtained as

U = kBT2
(

∂q(z,V,T)

∂T

)

z,V
.

Note that in the derivative with respect toT, the fugacityz= exp(µ/kBT) is kept constant (though it
depends onT).

The relations with thermodynamic quantities can most easily be formulated as

N =

(

∂kBT lnZ

∂ µ

)

V,T

P =

(

∂kBT lnZ

∂V

)

µ ,T

S=

(

∂kBT lnZ

∂T

)

µ ,V

4.4 Examples

We first calculate the grand canonical partition function ofthe ideal gas. We start from the canonical
partition function, which has the form

QN(N,V,T) =
VN

N!

(
√

2πmkBT
h

)3N

.
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Now

Z =
∞

∑
N=0

eβ µNVN (2πmkBT)3N/2

h3NN!

∞

∑
N=0

ξ N

N!
= exp(ξ )

with

ξ = Vz

(

2πmkBT
h2

)3/2

≡VzΛ−3.

The quantityΛ =
√

h2/(2πmkBT) is called thede Broglie wavelength– it depends onT only. From
this expression for the grand canonical partition function, the thermodynamic quantities can easily be
evaluated using the relations given in the previous section.

P =
zkBT
Λ3

N =
zV
Λ3

U = zVkBT2 dΛ−3

dT

S= −NkB lnz+zVkB

[

T
dΛ−3

dT
+ Λ−3

]

.

The first two of these relations can be combined into the well-known equation of state

PV = NkBT.

Interestingly, this relation does not depend onΛ, so it holds for other,uncoupledsystems too, such as
a system consisting of indistinguishable harmonic oscillators.

In a solid, consisting of atoms vibrating around their eqilibrium position, the oscillators arelo-
calised. This has two important implications: first of all, they are distinguishable, and, secondly, the
partition function of one such oscillator does not depend onthe volume. This leads to the following
form of the partition function:

QN(N,V,T) = (Q1(T))N .

Writing
Q1(T) ≡ φ(T),

this leads straightfordly to

Z = ∑
N

zN[φ(T)]N =
1

1−zφ(T)
.

We see thatzφ(T) must be smaller than 1 in order for this sum to converge. From the partition sum
the thermodynamic quantities can again be derived:

N =
zφ(T)

1−zφ(T)
;

U =
zkBT2φ ′(T)

1−zφ(T)
;

A = NkBT lnz+kBT ln [1−zφ(T)] ;

S= −NkB lnz−kB ln [1−zφ(T)]+
zkBTφ ′(T)

1−zφ(T)
.
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Note that calculating the pressure for this system is nonsensical, as the grand partition function is
independent of the volume (see Eq. (16) of Pathria, which youshould forget as soon as possible).
From the second of these equations, we see that

zφ(T) =
N

1+N
≈ 1−1/N

for largeN. This renders the other relations a bit simpler:

U/N = kBT2φ ′(T)/φ(T);

A/N = −kBT lnφ(T);

S/(NkB) = lnφ(T)+Tφ ′(T)/φ(T).

For quantum harmonic oscillators, we have

φ(T) = ∑
n

e−βℏω(n+1/2) =
e−βℏω/2

1−e−βℏω =
1

2sinh(βℏω/2
.

For classical harmonic oscillators we have, on the other hand,

φ = (βℏω)−1.

We now use these results in order to analyse the solid-vapoureuqilibrium. Solid and vapour are
in equilibrium when their chemical potentials are equal. For the gas, we have

zg =
NgΛ3

Vg
,

with Λ the de Broglie wavelengthh/
√

2πmkBT.
For the solid, which we describe a system composed of many independent oscillators, we have

zs = 1/φ(T).

The equilibrium is achieved for a gas density

Ng

Vg
=

1
Λ3φ(T)

.

For low vapour density and high enough temperature, we therefore find

P =
Ng

Vg
kBT =

1
Λ3φ(T)

kBT,

which follows immediately from the ideal gas equation of state.
For 3D harmonic oscillators, we have

φ(T) = [2sinh(ℏω/2kBT)]−3 .

We have however not taken into account the fact that the energy at the equilibrium point of the har-
monic oscillator describing an atom islower than the energy of a gas atom: after all, the atom is bound
to the solid, and we need a certain amount of energy to remove it from there and move it to the gas.
As a result, we must include a factor exp(βε) in the productφ(T)Λ3. We then arrive at an expression
for the vapour pressure

P = kBT

(

2πmkBT
h2

)3/2

[2sinh(ℏω/2kBT)]3 e−βε .

We see that two parameters enter this equation: the energy differenceε and the frequencyω . These
two parameters precisely determine shape and offset of the parabola’s defining the energy felt by an
atom in the solid.
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Formulation of Quantum Statistics

Up to now, we have mainly considered classical statistical mechanics. Of course, sometimes we
needed to take quantum mechanics into account in order to have well-behaved partition functions,
where ‘well-behaved’ means in this context that entropy and(free) energies scale linearly withN,
and also that integrals over phase space are dimensionless.Remember however that the density func-
tions we have considered so far were essentiallyclassical: we have derived Liouville’s theorem from
the classical (Hamilton) equations of motion, and inferredfrom that theorem that in equilibrium the
density function depends on the Hamiltonian only:ρ(q, p) = ρ [H(q, p)].

Now we shall consider statistical mechanics more strictly in the context of quantum mechanics.
The analog of the density function now becomes thedensity operator. This operator can be useful
when we do not know the actual state of the system, but only theset of possible states which the
system can be in, together with the probability for the system to be in any of those states. The density
operator is then

ρ̂ = ∑
i

pi |ψi〉〈ψi | ,

wherepi is the normalised probability for the system to be in state|ψi〉 (∑i pi ≡ 1).
From the time-dependent Schrödinger equation

iℏ
∂ |ψ〉

∂ t
= Ĥ |ψ〉

and its Hermitian conjugate

−iℏ
∂ 〈|ψ |

∂ t
= 〈ψ | Ĥ

which hold foranystate|ψ〉, we see that

iℏ
∂ ρ̂
∂ t

= iℏ∑
i

pi

[(

∂
∂ t

|ψi〉
)

〈ψi |+ |ψi〉
(

∂
∂ t

〈ψi |
)]

=

∑
i

pi
[(

Ĥ |ψi〉
)

〈ψi |− |ψi〉
(

〈ψi | Ĥ
)]

= Ĥρ̂ − ρ̂Ĥ.

From now on, we shall leave the hats from operators unless confusion may arise.
We see that we have an equation quite analogous to Liouville’s theorem:

ρ̇ =
i
ℏ

[H,ρ ] .

This is called thequantum Liouville theorem. Just as in the classical case, we note that in equilibrium
ρ̇ must vanish. In case we have a stationary Hamiltonian (i.e. no explicit time dependence), we have
ρ = ρ(H).

28
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We recall here that for any operatorG, the expectation value is easily evaluated as

〈G〉 =
Tr ρG
Tr ρ

.

Here, Tr is thetraceoperator. For any orthonormal basis|φn〉, it is evaluated as

Tr A = ∑
n
〈φn |A|φn〉 .

In a finite-dimensional Hilbert space, the basis is finite, and the trace boils down to adding the diagonal
elements of the matrix representation of the operator beingtraced.

Suppose we have an orthonormal basis setφn which forms a basis in our Hilbert space, Then we
can expressρ with respect to this basis:

ρnm = 〈φn |ρ |φm〉 .

This is the matrix representation. In a finite-dimensional Hilbert space, we therefore speak of the
densitymatrix rather than an operator. In case we have a state|ψ〉 which can be expressed in this
basis as

|ψ〉 = ∑
n

an(t) |φn〉 ,

we have
ρ = |ψ〉〈ψ | .

The density matrix then reads
ρnm = an(t)a

∗
m(t).

In a many-particle system, the physical wavefunctions havecoordinatesr1, . . . , rN. Also, spin
degrees of freedom might be included. The wavefunction in general can therefore be written as
ψ(x1, . . . ,xN), wherexi is supposed to include all degrees of freedom of a single particle. Now sup-
pose we have a complete set of basis statesφn(x) (n might assume an infinite number of values, even
continuum) for a single particle. Then a complete set of states for a system consisting ofN particles
is

ψn1,...,nN(x1, . . . ,xN) = φn1(x1)φn2(x2) . . .φnN(xN).

A general state of the system is a linear combination of thesebasis states. In general, such a state is
entangled.

5.1 Statistics of the various ensembles

Just as in the classical case, the density operator of a quantum system is given as

ρ = δ [H −EI]

whereI is the unit operator. In practice, we do not rigorously implement a delta-function, but instead,
count the states in a narrow interval(E,E+∆E). We can, instead of using the delta-function, also use
the theta-function which is constant for all energies smaller thanE, and zero for energies aboveE. As
mentioned in the first chapter, it does not matter which representation we choose because, for large
particle numbers, the dominant contributions to the entropy come from energies very close toE in the
latter representation.
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The entropy is given as
S= kB lnΓ,

whereΓ is the number of states with energy in a narrow band(E,E + ∆E). In a basis of eigenstates
of the Hamiltonian, the density matrix becomes diagonal:

ρnn =

{

1/Γ for En < E;

0 for En ≥ E.

In the canonical ensemble, we have a density operator

ρ = Ce−β Ĥ .

If we express this operator with respect to an energy-basis,that is, an orthonormal basis of eigenfunc-
tions of the Hamiltonian with eigenvaluesEn:

ρmn = Ce−βEnδnm.

From this, the normalisation is easily found as

1/C = Tr e−β Ĥ = ∑
n

e−βEn = QN(T),

just as in the classical case.

The grand canonical ensemble is formulated using theparticle number operator̂n in addition to
the Hamiltonian:

ρ = Ce−β Ĥ+β µ n̂.

In most cases, the particle number operator commutes with the Hamiltonian. The grand canonical
partition function is then found again as

1/C = Z (µ ,V,T) = ∑
N

eβ µN ∑
s

e−βEs = ∑
N

eβ µNQN(T).

5.2 Examples

5.2.1 Electron in a magnetic field

In order to practice the quantum formulation a bit, we calculate properties for some systems we have
considered before in the classical context.

The first example is that of an electron in a magnetic field. We consider only the interaction of the
magnetic moment with the magnetic field, and not the orbital degrees of freedom (i.e. the motion of
the electron, perhaps in some potential). The calculation is most conveniently done in the canonical
ensemble. Considering only a single spin, we have

H = −µB(σσσ ·B).

We work in the representation in whichσz is diagonal. Then we can use the fact that the exponential
of a diagonal operator is again a diagonal operator with the exponentials of its eigenvalues on the
diagonal:

ρ =
e−βBµBσz

Tr e−βBµBσz
=

1

eβ µBB +e−β µBB

(

eβ µBB 0
0 e−β µBB

)

.
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Then we obtain for the average expectation value ofσz:

〈σz〉 = Tr (ρσz) =
eβ µBB−e−β µBB

eβ µBB +e−β µBB
= tanh(β µBB).

A comparison with sections 3.9 and 3.10 shows that these results are correct.

5.2.2 Free particle in a box

We now consider a free particle in a box, governed by the Hamiltonian

H = ∑
i

p2
i

2m
.

Inside the cubic box of sizeL in which the particles move, the potential is zero; outside,we assume pe-
riodic boundary conditions. The eigenfunctions which are compliant with these boundary conditions
are

ψ(r) =

(

1
L

)3/2

ei(kxx+kyy+kzz),

with k = 2π/L(nx,ny,nz). The corresponding energies are

E(k) =
ℏk2

2m
.

We must choose a basis of the Hilbert space in order to evaluate the trace. First we choose as a basis
the eigenfunctions which we denote as|k〉:

〈

k
∣

∣

∣
e−βH

∣

∣

∣
k ′
〉

= e−ℏ
2k2/(2mkBT)δ (k −k ′),

so that the partition function becomes

QT = Tr
(

e−βH
)

= ∑
k

〈

k
∣

∣

∣
e−H/(kBT)

∣

∣

∣
k ′
〉

= ∑
k

e−βℏ
2k2/(2m) ≈

L3

(2π)3

∫

d3k e−βℏ
2k2/2m = V

(

m
2πβℏ2

)3/2

.

That the transition from the sum to the integral requires an extra factorL3/(2π)3 can be seen as
follows. On the grid ofk-values, the volume occupied by ak-point is(2π/L)3. The sum runs over the
points in a certain volume. This is then equal to that volume (i.e.

∫

d3k) divided by the volume per
point.

It is instructive to derive the same partition function using ther -representation:

〈

r
∣

∣

∣
e−βH

∣

∣

∣
r ′
〉

=
1
L3 ∑

k
eik·(r ′−r)e−ℏ

2k2/(2mkBT)

≈ 1
(2π)3

∫

d3k eik·(r ′−r)e−ℏ
2k2/(2mkBT)

=

(

m
2πβℏ2

)3/2

exp

(

− m
2βℏ2

∣

∣r − r ′
∣

∣

2
)

.
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The Fourier integral will be discussed in the exercises. Using this, the partition function can be
evaluated as

Q1(T) =

∫

〈

r
∣

∣

∣
e−βH

∣

∣

∣
r
〉

d3r = V

(

m
2πβℏ2

)3/2

which is obviously the same as the one found above.
The quantity〈r |ρ | r〉 which occurs in these expressions (rememberρ = exp(−βH)) represents the

probability density of finding the particle at positionr . Because we have periodic boundary conditions,
this must not depend onr , as we have found. On the other hand, the expression〈r |ρ | r ′〉 gives the
probability that a particle suddenly moves fromr to r ′ as a result of a thermal fluctuation.

Let us evaluate the expectation value of the energy. This is most easily evaluated in thek-
representation:

〈H〉=
Tr (He−βH)

Tr (e−βH)
=

1
Q1

V
(2π)3

∫

ℏ
2k2

2m
e−ℏ

2k2/(2mkBT)d3k =
3
2

kBT,

that is, equipartition is satisfied. We could also use

〈H〉= −∂ lnTr (e−βH)

∂β

which leads to the same result.
One might ask how general the equipartition theorem is. We have seen in the case of the quantum

harmonic oscillator (see exercises and the next section) that the equipartition theorem does no longer
hold for kBT

<∼ ℏω . In order to check whether this theorem still holds for the kinetic energy only, we
must evaluate

〈T〉 =
Tr
[

Te−β(T+V)
]

Tr
[

e−β(T+V)
] .

The contributions from exp(−βV) in numerator and denominator do no longer cancel, as a resultof
the fact thatT andV do not commute. Therefore, the equipartition theorem no longer holds in the
quantum case.

5.3 Systems composed of indistinguishable particles

To fix the ideas, we start by considering the noninteracting case. Then, the Hamiltonian has the form

H =
N

∑
n=1

Hn

whereHn only acts on the coordinates of particlen. The coordinates of the particles are denoted by

q = (q1,q2, . . . ,),

whereqn denotes the coordinate(s) of particlen. The eigenstates of the Hamiltonian then have the
form

ψE(q) =
N

∏
n=1

un(qn),

where
Hnun = εnun.
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The total energy is given as

E =
N

∑
n=1

εn.

Note thatndenotes a particle, not a particular energy level. Now suppose that the particles are identical
– in that case, the form of the Hamiltonians, and their spectra should be identical. Now suppose that
we haveN particles with energyE. As each of the particles occupues energies of the same spectrum,
there might be more than one particle in the one state with energy εi. We must have:

N = ∑
i

ni ,

E = ∑
i

εi .

The states can then be written as

ψE(q) =
n1

∏
m=1

u1(qm)
n2

∏
m=1

u2(qm) . . .

Now, if the particles areidentical, we know that a permutation of them leaves the total Hamiltonian
invariant. If this is the case, the Hamiltonian commutes with the permutation operator:

PH = HP.

If an operator commutes with the Hamiltonian, it must be possible to construct the eigenstates of
the Hamiltonian in such a way, that they are simultaneously eigenstates of that operator. You might
recall from your mathematics course that any permutation can be written as a product of particle
exchanges (a particle exchange means that we exchange a particle pair, i, j, say). Let us callPi, j a
particle exchange for the pairi, j. We obviously haveP2

i, j = 1. Then also the eigenvaluesλ of Pi, j

should satisfyλ 2 = 1. As we furthermore know that, sincePi, j is Hermitian,λ is real, we must have
λ = ±1. We see that the particle wavefunctions are either symmetric under particle exchange (λ = 1)
of antisymmetric (λ = −1). It turns out that for a particular kind of particles, we have either one or
the other possiblity. Particles whose wavefunction is symmetric with respect to exchange, are called
bosons; those which have antisymmetric wavefunctions are calledfermions.

The fact that any permutation operator can be written as a product of exchanges, leads to the
conclusion that always

PψE = ±ψE.

This notion directly leads to the conclusion that the microstates are invariant with respect to any
permutation of the particles. Therefore, the numbersni , which tell us how many particles can be
found in statei, define a microstate uniquely, and additional correction factors for proper counting
should not be included in sums over the states.

Even if the particles interact, we can use the same representation (although theui are no longer
eigenstates of single-particle Hamiltonians). The reasonwhy interaction does not matter is that the
products of single particle states form a basis of the Hilbert space for many particles, whether they
interact or not.

Finally we note that, for fermions, we can construct wavefunctions constructed from single-
particle statesui as follows:

ψ(q) =
1√
N!

∣

∣

∣

∣

∣

∣

∣

∣

∣

ui(q1) ui(q2) . . . ui(qN)
u j(q1) u j(q2) . . . u j(qN)

...
...

. . .
...

ul (q1) ul (q2) . . . ul (qN)

∣

∣

∣

∣

∣

∣

∣

∣

∣
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where the vertical bars|. . .| denote a determinant. This wavefunction is called aSlater determinant.
The prefactor follows automatically from the normalisation condition (theui are considered to be
normalised). In the case of Bosons, we have a similar expression, but the minus-signs in evaluating
the determinant all turn into plus-signs.

Another way of writing the wavefunction is

ψ(q1, . . . ,qN) = ∑
P

δ [P]Pui(q1)u j(q2) · · ·ul (qN),

where∑P denotes a sum overall possiblepermutations,δ = 1 for bosons and−1 for fermions and[P]
is the sign of the permutation. The sign of the permutation isdetermined as the number of exchange
operations it is composed of. Note that the permutation operator acts on thearguments qn of the
wavefunctions only, not on the labelsi, j, . . .. Note that this state is not normalised in the case of
bosons:

〈ψ |ψ〉 = n1!n2! · · ·
wheren1 etcetera are the occupation numbers of the different states. To see that this factor occurs
indeed in the normalisation, look at a system consisting of two bosons, both in the same stateu:

ψ =
1√
N!

[u(q1)u(q2)+u(q2)u(q1)] =
√

2u(q1)u(q2).

We see that the norm of this state is 2!= 2. For fermions we do not have this problem, as no two
particles can be in the same state.

5.4 The density matrix and the partition function of a systemof free particles

We know the wavefunctions already for a single particle (seesection 5.3):

uk(q) =
1

L3/2
eik·r .

With the above definition of a many-particle basis function,we must therefore evaluate

〈

k1, . . . ,kN |exp(−βH)|k ′
1, . . .k

′
N

〉

where the states|k ′
1, . . .k

′
N〉 are (anti)symmetrised states.

In order to evaluate this equation we note the following:

• On the left hand side and on the right hand side, we have actually a sum over all permutations.

• For a particular permutation fordifferentk i on the left hand side, the operator exp(−βH) in the
middle forces the states on the right hand side to correspondin a one-to-one fashion to those on
the left hand side.

• The normalising prefactors 1/
√

N! on the left and right hand side yield a factor 1/N!.

Combining all these considerations, we see that

〈

k1, . . . ,kN |exp(−βH)|k ′
1, . . .k

′
N

〉

= e−ℏ
2(k2

1+···+k2
N)/(2mkBT)

N

∏
i=1

δ (k i −k ′
i)
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where the normalisation factorn1!n2! . . . of the Slater determinant has already be divided out in order
to work with normalised states. This factor amounts to 1 if all k i are different.

When taking the trace, we must sum over a statek1, . . . ,kN. Note that this sum must include a
restriction such that for the set of permutations of the quantum numbersk1, . . . ,kN only onemember
is chosen, otherwise we are overcounting. But we can relax any such restriction provided we divide
by the number of possible permutations

N!
n1! ·n2! · · · .

Therefore we have as the final result

QN =
1

N!
L3N

(2π)3

{

∫

exp
[

−ℏ
2k2/(2mkBT)

]

d3k

}N

=
1

N!

(

V
Λ3

)N

.

We see that we have obtained the correct expression of the partition function. Note that we have been
sloppy in this calculation: if allk would be different, the result would be correct. But by integrating
over all possile combinationsk1, . . . ,kN, we have included the cases where twok’s are the same.
If there is such overlap, the 3N-dimensional integral no longer factorises intoN three-dimensional
integrals. It turns out that the correction turns out to be very small whenV1/3 ≫ Λ: then for the vast
majority of configurations, no twok’s overlap.

Obviously, we could have evaluated this partition functionusing the coordinate (r ) basis rather
than thek-basis. The book uses this representation, but the calculation is more difficult. We shall
work out here the example of a two-particle system. We first evaluate

〈

r1, r2

∣

∣

∣
e−βH

∣

∣

∣
r1, r2

〉

=
1
2

L6

(2π)6

∫

{1±cos[(k1−k2) · (r1− r2)]}e−βℏ
2(k2

1+k2
2)/(2m) d3k1d3k2.

In this expression, the first term is the one where the particles are both on the left and right hand side
of the matrix element in the same state (both eitherk1 or k2), and the second term corresponds to
different states on the left and right hand side of the matrixelement – the+ sign is for bosons, the−
for fermions. Evaluating the integrals we obtain

〈

r1, r2

∣

∣

∣
e−βH

∣

∣

∣
r1, r2

〉

=
1

2Λ6

[

1±exp(−2π(r12/Λ)2)
]

.

Taking the trace means that we must integrate overr1 andr2:

Q2 =
1

2λ 6

∫

[

1+exp(−2π(r12/Λ)2)
]

d3r1d3r2 =
1
2

(

V
Λ3

)2[

1± 1

23/2

(

Λ3

V

)]

.

We see that the result reduces to the correct partition function for the case whereΛ ≪V1/3 = L. The
probability density for the particles to be atr1 andr2 can be considered for the boson- end fermi case.
We define thestatistical potential vs(r) as

e−βvs(r12) = ρ(r1, r2).

The statistical potential is shown in figure 5.1. We see that the potential has the correct behaviour in
the sense that it prevents fermi particles to come close, andfavours bose particles to come close.

It is instructive to repeat the calculation for the two-particle partition function in terms of thek
basis. For bosons, we have a possible state for each combination k1,k2. In this case, fork1 6= k2 the
wavefunction is:

ψ =
1√
2

(ψk1(1)ψk2(2)+ ψk1(2)ψk2(1)) .
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Figure 5.1: Statistical two-particle potential for bose (solid line) and fermi (dashed line) systems.

For k1 = k2, the wavefunction is:
ψ = ψk1(1)ψk1(2).

Note that the two expressions differ by a factor
√

2.
For fermions, we have a possible state only whenk1 6= k2:

ψ =
1√
2

(ψk1(1)ψk2(2)−ψk1(2)ψk2(1)) .

If we calculate the partition function, we must integrate over k1 andk2, but we see that we must
single out the contributions fork1 = k2. In general, for an operatorA which isdiagonalin phase space
we have

Tr A =
1
2

(

V
(2π)3

)2∫

A(k1,k2)d
3k1d3k2±

1
2

V
(2π)3

∫

A(k,k)d3k.

For the trace, this results in

Tr e−βH =
1
2

(

V
(2π)3

)2(2πmkBT
ℏ2

)3

± 1
2

V
(2π)3

(

πmkBT
ℏ2

)3/2

=

1
2

(

V
(2π)3

)2(2πmkBT
ℏ2

)3[

1± 1

23/2

Λ3

V

]

.
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The theory of simple gases

In the last chapter we have laid the foundations for quantum statistical mechanics. Let us summarise
the most important results here. A quantum state of a collection of identical particles is a fully anti-
symmetric (for fermions) or symmetric (bosons) many-particle state. Such a state can be constructed
from single-particle states by a Slater determinant (in thecase of fermions) or a symmetrised linear
combination of products of single-particle states (bosons). In this chapter we shall work out further the
case of non-interacting particles for which the partition functions usually factorise, thereby rendering
a full analytic solution feasible.

6.1 An ideal gas in other quantum-mechanical ensembles – occupation numbers

Quantum states for ideal gases arefully characterised by specifyinghow many particles there are in
each available state. From this it follows that, if we have a set of single-particle quantum states|i〉,
the many-particle state is specified by the numbersni of particles in each such state. If we haveN
particles, we must have

∑
i

ni = N.

If the single-particle states are eigenstates of the singleparticle Hamiltonian with energiesεi , we can
evaluate the energy of the system to be

E = ∑
i

niεi .

The number of single-particle products in such a state is

N!
n1! ·n2! · · · .

In any sum over all the eigenstates, each set(n1,n2, . . .) should be countedonly once.
In Maxwell-Boltzmann counting, we sum over all possible configurations fordistinguishablepar-

ticles and then divide byN! Therefore, the effective weight with which we take the configuration
(n1,n2, . . .) into account is

g(n1,n2, . . .) =
1

n1! ·n2! · · ·
instead of the correct factorg= 1 which is taken into account in Bose-Einstein counting. Thetwo are
equivalent only if each state contains at most one particle,which occurs at high enough temperature
and large enouh volume.

The canonical partition function can be evaluated as

Q(N,T) = ∑
{ni}

′
g(n1,n2, . . .)e

−β ∑i εini
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where∑′
{ni} denotes a sum over all configurations(n1,n2, . . .) with ∑i ni = N. Because of this last

restriction, it is not easy to evaluate this partition function. Note that for Bose-Einstein (BE) and
Fermi-Dirac (FD) statistics, the weight factorg = 1, and that for Maxwell-Boltzman statisticsg =
1/(n1! ·n2! · · · ).

In order to proceed, we look at the grand canonical partitionfunction, where the restriction∑i ni =
N does not come into play:

Z (µ ,T) = ∑
{ni}

g(n1,n2, . . .)e
β ∑i(µ−εi)ni .

The nice property of this partition function is that it factorises into a product of sums overni . In the
case of BE statistics:

Z (µ ,T) =
∞

∑
n1=0

eβ(µ−ε1)n1
∞

∑
n2=0

eβ(µ−ε2)n2 · · · .

Each of the factors is a geometric series which can be evaluated analytically:

∞

∑
n=0

eβ(µ−ε)n =
1

1−eβ(µ−ε)

Note, however, that in order for the grand canonical partition function to be well-defined, it is neces-
sary thatµ < ε0, whereε0 is the ground state energy.

For FD statistics, the situation is even simpler: each of theni only assumes the values 0 or 1.

1

∑
n=0

eβ(µ−ε)n = 1+eβ(µ−ε).

For Maxwell-Boltzmann counting, with 1/(n1! ·n2! · · · ), the factors are identified as the power series
expansions of the exponential function:

∞

∑
n=0

1
n!

eβ(µ−ε)n = exp
[

eβ(µ−ε)
]

.

It is also possible to evaluate the average occupations of the levels. For Bose-Einstein statistics,
we obtain:

〈ni〉 =
∑∞

n1=0eβ(µ−ε1)n1 · · ·∑∞
ni=0nieβ(µ−εi)ni · · ·

∑∞
n1=0eβ(µ−ε1)n1 · · ·∑∞

ni=0eβ(µ−εi)ni · · · .

All factors in the numerator and the denominator are identical, except for thei-th factor, which yields:

〈ni〉 =
∑∞

ni=0nieβ(µ−εi)ni

∑∞
ni=0eβ(µ−εi)ni

This can be evaluated as

〈ni〉 =
∂

∂β (µ − εi)
ln

[

1

1−eβ(µ−εi)

]

=
1

eβ(εi−µ)−1
.

This is the famous Bose–Einstein distribution function.
For Fermi-Dirac statistics, we obtain

〈ni〉 =
∂

∂β (µ − εi)
ln
[

1+eβ(µ−εi)
]

=
1

eβ(εi−µ) +1
.
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Figure 6.1: Bose–Einstein, Fermi–Dirac and Maxwell–Boltzmann distribution functions.

Finally, for Maxwell-Boltzmann counting, we have, not really surprisingly:

〈ni〉 =
∂

∂β (µ − εi)
ln
[

exp
(

eβ(µ−εi)
)]

= eβ(µ−εi).

In figure 6.1 we show the different distribution functions.

6.2 Examples: gaseous systems composed of molecules with internal motion

Consider a gas consisting of molecules with internal degrees of freedom. These can include electronic
or nuclear spin, and vibrational or rotational motions of the nuclei. We neglect the interaction between
different molecules, which is justified in the gas phase whentheir mutual separations are on average
very large. We furthermore suppose that the thermal wavelength is much smaller than the system size,
so that Boltzmann counting is justified.

In the usual way, we may factorise the partition function into partition functions of the individual
molecules:

Q(N,T,V) =
1
N!

[Q(1,T,V)]N

where the single-molecule partition function has the form:

Q(1,T,V) = V

(

2πmkBT
h2

)3/2

j(T).

To obtain this expression, it is necessary to split up the degrees of freedom: we consider the centre
of mass coordinates separately from the internal degrees offreedom. The centre of mass coordinates
of the molecules yield the free, ideal gas partition function, whereas the internal degrees of freedom
generate the internal, molecular partition functionj(T):

j(T) = ∑
i

gie
−εi/(kBT).

The factorgi is the multiplicity (degeneracy) of the statei. We do not have to include the counting
factor 1/n1! sincen1 ≤ 1 in the regime considered.



40

For these systems,

P = −∂A
∂V

=
NkBT

V
.

Note thatj(T) does not contribute to the pressure, as does not depend on thevolume (which is natural,
since j(T) includes onlyinternal degrees of freedom). The energy can be evaluated as

E =
3
2

NkBT +Eint,

where

Eint = NkBT2 ∂
∂T

ln j(T).

Also the specific heat at constant volume can be evaluated as

CV =
3
2

NkB +
dEint

dT
.

UsingPV = NkBT, we obtain for the specific heat at constant pressure:

CP =

(

∂ (E +PV)

∂T

)

N,P
=

5
2

NkB +
dEint

dT
,

where we have again used the fact that the internal degrees offreedom do not depend onV.
Other quantities which can be evaluated are the chemical potential and the entropy:

S= Sideal+NkB

(

ln j +T
∂

∂T
ln j

)

;

µ = µideal−kBT ln j.

We see thatj always influences the values of these two quantities, whereas those of the energy and of
the specific heat are determined only by the temperature-dependence ofj.

Let us, as en example, consider a monatomic gas for which the electronsor the nuclei have spin
S. We have

j = 2S+1.

The spin does not influence the energy (if we neglect the (hyper)fine structure) and only the chemical
potential and entropy are affected by the spin.

If on the other hand, the electron has orbital angular momentum in addition to its spin, then there is
fine structure splitting. From quantum mechanics, we know that the fine structure energy correction is
determined by the value of the quantum numberJ, which is the value of the total angular momentum.
Calling the energy levelsεJ, we have

j = ∑
J

(2J+1)e−βεJ .

Diatomic molecules consist of two atoms. We then have additional degrees of freedom: two
related to rotations and one to vibrations. We first considerthe vibrations along the axis connecting
the nuclei. As the atomic bonds are relatively stiff, the corresponding frequency is high: in fact the
distance between the vibrational levels,ℏω , is of the order of 103 K, which means that these vibrations
can only be seen for temperatures of that order. We have already evaluated the partition function of
the harmonic oscillator. It turned out that forT ≫ ℏω the system satisfies equipartition, leading to
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a constant specific heat, and that the specific heat for small temperatures decays to zero. The full
behaviour is given by

CV = NkB(βℏω)
eβℏω

(eβℏω −1)2
.

The temperatureℏω/kB is often denoted asθv: it is the temperature where the vibrations become
noticeable in the specific heat.

A diatomic molecule can be considered as a ‘rigid’ rotator ifwe neglect the coupling between
vibrations and rotations. The quantum mechanical energiesfor a rigid rotator are given as

El =
ℏ

2l(l +1)

2I

whereI is the moment of inertia perpendicular to the molecular axis. Again we can define the tem-
perature where rotations become important. This is

θr =
ℏ

2

2IkB
.

This temperature is in general much lower than the vibrational temperature. The partition function for
the rotations is

jr =
∞

∑
l=0

(2l +1)exp[−θrl(l +1)/T] .

For low temperatures, only the first few terms will contribute significantly to the partition function:

jr(low T) ≈ 1+3e−2θr/T +5e−6θr/T + · · · .

For high temperatures, the sum can be replaced by an integration:

jr(high T) ≈
∫

(2l +1)exp[−θrl(l +1)/T]dl =
T
θr

.

This results in a contributionNkB to the specific heat.
In summary we can say that

• At all temperatures, we see the effect of spin degeneracy in the entropy and the chemical potential.

• For low temperatures, fine structure effects may become noticeable in the specific heat.

• For high enough temperatures, first the rotational freedom will affect the specific heat.

• For even higher temperatures, the vibrational degrees of freedom will become noticeable.

If we disregard fine structure, we see that forT < θr,θv, we have

CV =
3
2

NkB, for T ≪ θr,θv,

CV =
5
2

NkB, for θr ≪ kBT ≪ θv,

CV =
7
2

NkB, for T ≫ θr,θv.
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Examples of quantum statistics

Quantum statistics involves either Bose–Einstein or Fermi–Dirac counting in the evaluation of phys-
ical quantities. Examples have been covered extensively inthe statistical physics course of the third
year (G. Bauer). Therefore, we restrict ourselves here to a brief review of the major applications.

7.1 Thermodynamics of free quantum gases

As we have seen in the exercises, we can write

Nλ 3

V
=

1

π3/2

∫

d3x
1

ex2−β µ ±1
,

where the+ sign corresponds to Fermi, and the− sign to Bose statistics. Furthermore

λ =
h√

2πmkBT
.

In the classical limit for whichµ is strongly negative, this leads to

nλ 3 = eβ µ ∓ 1

23/2
e2β µ + · · · .

This equation shows that when we keep the density fixed, strongly negativeµ corresponds to high
temperatures.

For the pressure, we have the expression

P
kBT

=
1
V

lnZ = ± 1

λ 3π3/2

∫

d3x ln
(

1±e−x2+β µ
)

,

where the+ sign is for fermions, and the− sign for bosons. In the classical limit,e−x2+β µ ≪ 1, this
yields, after expanding to second order in exp(β µ):

P
kBT

=
1

λ 3π3/2

[

∫

d3x e−x2
eβ µ ∓e2β µ

∫

d3x e−2x2
]

=
1

λ 3

(

eβ µ ∓ 1

25/2
e2β µ

)

.

If we now substituteeβ µ by the expansion obtained above, we see that

P = nkBT
(

1±2−5/2nλ 3
)

The first term is the classical results; the second term givesthe quantum correction. For Fermions we
have the plus-sign, which indicates that the particles seemto repel each other as a result of the Pauli
principle. For Bosons (minus-sign) the pressure becomes smaller, indicating an effective attraction.
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Finally we can derive the entropy:

S= −
(

∂kBT lnZ

∂T

)

µ ,V
= V

(

∂P
∂T

)

µ ,V
.

Now we copy the lowest order term in the expansion found abovefor the pressureP:

S= V
∂

∂T

[

(kBT)5/2
( m

2πℏ2

)3/2
eβ µ
]

=
V
λ 3eβ µ

[

5
2

kB − µ
T

]

.

Combining this with the classical relationeβ µ = nλ 3 gives

S= NkB

[

5
2

+ ln(λ 3/n)

]

,

which, forλ =
√

h2/(2πmkBT) andE/N = 3kBT/2 can be written in the form:

S= NkB

[

3
2

ln
E
N

+ ln
V
N

+
3
2

ln

(

4πm
3h2

)

+5/2

]

.

This is again the Sackur–Tetrode formula for the entropy of an ideal gas. The quantum corrections
can be evaluated analogous to the case of the pressure. The result is

S= SClass±
1

8
√

2
λ 3NkB.

7.2 Bose-Einstein systems

7.2.1 Planck distribution

Take an empty box in contact with a reservoir of temperatureT. The reservoir can interact with
the box by emitting electromagnetic (EM) field waves into it.In quantum language we say that
photons can travel into the box. The photons carry energyℏω , with ω = c|k|. Which k vectors are
accessible is determined by the shape of the box. If we take a cube of sizeL×L×L, thek vectors are
2π/L(nx,ny,nz) with Ni integer. From the quantum theory of the elactromagnetic field, it follows that
the photons are created and annihilated freely, so that there number cannot be controlled by a chemical
potential. Creating a new photon in particular does not involve any cost except for its energy, soµ = 0.
Therefore, the number of modes available at frequencyω is given by

N(k)dk= 2·4πk2dkL3/(2π)3 = V
ω2dω
c3π2 .

In this expression, the factor of 2 arises from the fact that there are two transverse modes (only trans-
verse modes are allowed by Maxwell’s equations), and we havedivided the volume of the spherical
shell with thicknessdk in k-space by the volume(2π/L)3 of eachk-point, and usedω = ck. Now we
use the fact that the photons are bosons (they are spin-1 particles) and we have for the energy radiated
at frequencies betweenω andω +dω :

u(ω)dω = n(ω)ℏωdω =
ℏ

π2c3

ω3dω
eℏω/kBT −1

.

where the BE distribution is recognised, multiplied by the energy of the mode and the occupancy.
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Figure 7.1: The Bose–Einstein functiong.

7.2.2 Bose–Einstein condensation

The BE distribution is well defined only for values ofµ below the ground state energy – otherwise,
the occupancy becomes negative. Let us, for such an acceptable µ , evaluate the number of particles
as a function ofµ :

N = ∑
k

1

eβ(ℏ2k2/(2m)−µ)−1
≈ V

(2π)3

∫

1

eβ(ℏ2k2/(2m)−µ)−1
4πk2dk.

Reparametrisingℏ2k2/(2mkBT), we obtain for the particle density

nλ 3 =
4√
π

∫ ∞

0

x2

ex2−β µ −1
dx≡ g(β µ).

Note that the integral depends onβ µ only. In function 7.1, we plot the functiong(β µ) as a function
of β µ . Forβ µ → 0 this function approaches the value 2.61.

This imposes a temperature-dependentmaximumon the particle density – beyond this value, the
analysis fails, and the only way out is by questioning the transition from the sum overk to an integral.
In fact, this transition is not justified ifε0− µ really approaches the value 0, whereε0 is the ground
state energy (i.e. the energy corresponding to the longest wavelength). In that case we must split off
the term corresponding to the ground state energy, which nowis macroscopically occupied (that is, a
finite fraction of the particles is in the ground state).

What happens is that the gas splits up into two parts. The normal part fills the energy levels
according to the BE distribution in the usual way. This fraction corresponds to

nnormalλ 3 = 2.61.

If the total particle density is greater than prescribed by this limit, the rest of the particles occupied the
ground state. We therefore know thatnG = n−nnormal particlesper unit volumewill be in the ground
state. The occupation of the ground state is

VnG =
1

eβ(εG−µ)−1
.
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Figure 7.2: Pressure versusλ 3/n. The critical density corresponds to 1/2.61 on the horizontal axis.

We now can deduce that
εG−µ ≈ 1/(βV nG)

i.e., the larger the system, the closer the chemical potential will be to the ground state.
As we have seen in section 7.1, the pressure is given by

P = −kBT
λ 3

4√
π

∫

dx x2 ln(1−e−x2+β µ).

Thex = 0 term no longer contributes, even whenµ is close toε , as the denominator in the formulae
for the density is now replaced by the logarithm.

Now we keep the temperature constant, and let the density vary. For densities lower than the
critical density,µ will vary and assume negative values. For densities higher than the critical value,
µ = 0 and the pressure remains constant. Figure 7.2 shows the pressure as a function of the inverse
density.

7.2.3 Phonons and the specific heat

Phonons are lattice vibrations, and they can be understood by realising that the system of interacting
atomic nuclei can be approximated by aharmonic system, i.e. a system of particles connected by har-
monic springs. Close to the configuration of minimum potential energy, any system can be described
in terms of harmonic interactions, and the excitations can be described in terms of a collection of
independentharmonic oscillators (see the classical mechanics course). The energy for such a sys-
tem can easily be found: we simply add up the expectation value of the energies of the oscillators at
frequenciesωi and at temperatureT:

U(T) =

[

Φ0 +∑
i

ℏωi

2

]

+∑
i

ℏωi

eℏωi/(kBT) −1
.

The first term on the right hand side is the energy-offset, thesecond is the zero-point energy of the
harmonic oscillator, and the rightmost term is the average energy due to the energy quantanℏωi .
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We can evaluate the sums by transforming them into integrals, but Einstein avoided this in 1907 by
requiring that there was approximately only one frequency,ωE, at which the oscillators would vibrate.
This leads directly to

CV(T) =
∂U
∂T

= 3NkB
x2ex

(ex−1)2 ,

wherex = ℏωE/(kBT) = θE/(kBT). The parameterθE is called theEinstein temperature.
For low temperatures, the Einstein result does not match theexperimental results very well. At

higher temperatures, however, it approaches the classicalresult 3NkB (why?).
Peter Debye took the actual distribution of modes which we have already encountered above for

the photons. This distribution is however cut off as there cannot be more modes than particles:
∫ ωD

0
VCω2dω = N.

The value of the proportionality constant depends on the sound speeds for transverse and longitudinal
waves. Using theω2 distribution, The specific heat is found as

CV(T) = 3NkBD(x0),

wherex0 = ℏωD/(kBT) = θD/(kBT). The parameterθD is called theDebye temperature. The Debye
functionD(x) is defined as

D(x0) =
3

x3
0

∫ x0

0

x4ex

(ex−1)2dx.

For low temperatures, the Debye result for the specific heat is

CV(T) = C(T/θD)3.

For high temperatures, we can perform a Taylor expansion of the integrand in the expression for
D which yields

D(x0) ≈
3

x3
0

∫ x0

0
x2dx= 1,

so that we find again
CV → 3NkB

as it should be for high temperature.

7.3 Fermions

7.3.1 Degenerate Fermi gas

The name ‘degenerate Fermi gas’ is used for a dense system consisting of noninteracting Fermions.
Dense means that

nλ 3 = eβ µ

is larger than 1. In that case, the chemical potentialµ is positive. ForT = 0, the distribution function
has a square shape, and for small, but positiveT, the square shape gets rounded of, as shown in
figure 7.3. In the ground state, which is occupied forT = 0, all the one-particle levels are filled for
energies smaller thanµ . The chemical potential atT = 0 is called theFermi energy, εF. For particles
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Figure 7.3: The Fermi distribution function forT = 0 and small, but positiveT.

moving in a cubic box with sideL, the particles fill up a sphere ink-space, sinceE = ℏ
2k2/(2m). The

radius of this sphere is as usual related to the particle number:

N = 2
L3

(2π)3

4π
3

k3
F.

The factor 2 is for the particular case of electrons, and it takes care of the double spin-degeneracy. We
conclude that

εF =
ℏ

2k2
F

2m
=

ℏ
2(3nπ2)2/3

2m
.

From figure 7.3 it is clear that for positiveT, the chemical potential will remain more or less
constant. What happens is that some electrons withε < εF are excited toε > εF. These excited
electrons come from a band of width≈ kBT below the Fermi energy, and they occupy states in a
bandkBT above the Fermi energy. We speak of a degenerate Fermi gas when kBT ≪ εF. Degenerate
Fermi gases are quite familiar: in a metal, the valence electrons have a fermi energy corresponding to
about 50000 K, much larger than room temperature. In a particular kind of stars, the so-called ‘white
dwarfs’, the electrons have a Fermi temeperature of 107 K.

To show that the chemical potential for a degenerate electron gas deviates only to order(kBT/εF)
2

is not easy. We shall take this for granted here. If we do so, wecan easily evaluate the specific heat of
the degenerate electron gas. It is convenient to count the number of states at a specific energy – this is
called the density of states. The number ofk-points which lie in the rangek,k+ ∆k is given as

D(ε)∆ε = 2
L3

(2π)3 4πk2∆k;

therefore

D(ε)∆ε =
V

2π2

(

2m
ℏ2

)3/2√
ε∆ε ,

which can also be written as

D(ε) =
3
2

Nε−3/2
F

√
ε.

The total energy is now given by

〈E〉 =
∫

dε D(ε)ε f (ε ,T).
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We have usedf (ε ,T) for the Fermi-Dirac distribution function and we will stickto this convention
from now on. Taking the temperature derivative of this expectation value yields the specific heat.

Using the fact that

N =
∫

dε D(ε) f (ε ,T),

we can write
〈E〉 = NεF +

∫

dε D(ε)(ε − εF) f (ε ,T).

If we take the derivative with respect toT and assume thatµ is approximately temperature-independent
(this is not quite correct, see below), we obtain:

CV =
∂ 〈E〉
∂T

=
1

kBT2

∫ ∞

0
dε D(ε)

ε − εF
(

e(ε−εF)/(2kBT) +e−(ε−εF)/(2kBT)
)2

Note that the integrand is small everywhere, except in a bandkBT aroundεF. This allows us to take
D(εF) out of the integral. Changing to the integration variablex = (ε − εF)/(kBT), we have

CV = k2
BTD(εF)

∫ ∞

−εF/(kBT)

x2

(

ex/2 +e−x/2
)2 dx.

The lower boundaryεF/(kBT) of the integral is large but negative – we replace it by−∞. Using

∫ ∞

∞

x2 dx

(ex/2 +e−x/2)2
=

π2

3
,

we have

CV =
π2

3
k2

BTD(εF).

Substituting the valueD(εF) = 3/2N/(kBT) we obtain:

CV =
π2

2
NkB

T
TF

where theFermi temperature TF is defined byεF = kBTF. We see that the specific heats grows linearly
with T. This growth stops only at the Fermi temperature, which, as we have seen, lies fairly high. For
very high temperatures (higher thanTF), the specific heat saturates at 3NkB/2. If we compare this with
phonons, we see that for low temperature, where the specific heat due to the phonons, grows asT3,
the electronic contribution dominates, whereas for temperatures well above the Debye, the phonon
contribution saturates at 3NkB, well above the maximum contribution of the electrons.

Although this calculation yields the correct result, a few things have been wiped under the carpet,
in particular the fact thatµ was replaced byεF. We now present a correct calculation, which starts by
expressingN as an integral over the function∆(ε) which is an integral of the density of states over the
energy:

∆(ε) =

∫ ∞

0
D(ε ′)dε ′.

Then we can write, using partial integration:

N =
∫ ∞

0
D(ε) f (ε ,T) dε = −

∫ ∞

0
∆(ε)

f (ε ,T)

dε
dε .
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The partial integration has the advantage that the energy derivative of f is nonzero only in a small
interval aroundµ so that we can expandD aroundµ :

N =
∫

[

∆(µ)+ (ε −µ)D(µ)+
(ε −µ)2

2
D′(µ)

]

1
kBT

1
(

e(ε−µ)/(2kBT) +e−(ε−µ)/(2kBT)
)2 dε .

We have used the prime′ to indicate a derivative with respect toT. Again selecting only the even
integrands, we obtain two terms:

N = ∆(µ)+D′(µ)
π2

6
(kBT)2 ,

where in the first term we could integrate directly as the integrand is proportional to the energy-
derivative of f , and in the second integral we have used the same result as wasused in the simplified
derivation.

The main observation now is to realize that, if we want to calculate the specific heat at constant
density, the number of particles should be fixed. This implies that its derivative with respect to the
temperature should vanish:

dN
dT

= D(µ)µ ′ +D′(µ)
π2

3
k2

BT +D′′(µ)µ ′ (kBT)2 π2

6
.

For low temperatures, the rightmost term is much smaller than the first two, so that we have

D(µ)µ ′ +D′(µ)
π2

3
k2

BT = 0.

We now perform a similar analysis for the specific heat, alongthe lines of our simple derivation
above:

cV =
∫

ε
∂ f
∂T

dε = µ
∫

D(ε)
∂ f
∂T

dε +
∫

D(ε)(ε −µ)
∂ f
∂T

dε .

We have
∂ f
∂ε

=
1

kBT2

ε −µ +Tµ ′
(

e(ε−µ)/(2kBT) +e−(ε−µ)/(2kBT)
)2 .

Substituting this into the two integrals appearing in the expression forcV , we obtain:

cV = µ
∫

[

D(µ)+ (ε −µ)D′(µ)+ . . .
] 1

kBT2

ε −µ +Tµ ′
(

e(ε−µ)/(2kBT) +e−(ε−µ)/(2kBT)
)2 dε+

∫

[

D(µ)+ (ε −µ)D′(µ)+ . . .
]

(ε −µ)
1

kBT2

ε −µ +Tµ ′
(

e(ε−µ)/(2kBT) +e−(ε−µ)/(2kBT)
)2 dε

Carefully analysing these integrals gives three dominant terms, where two arise from the first integral,
and the third one from the second integral:

cV = µµ ′D(µ)+ µD′(µ)
π2

3
k2

BT +D(µ)k2
BT

π2

3
.

Using the relation obtained above from the vanishing temperature-derivative of the particle num-
berN then yields:

cV = D(µ)k2
BTπ2/3.

Substituting the explicit expression for the density of states yields the result obtained above.
Note that in this derivation, no reference to the explicit form of D(ε) has been made.
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7.3.2 Pauli paramagnetism

In chapter 3 we have already considered paramagnetism (section 3.9 and 10). Here we shall consider
the full quantum description for spin-1/2 fermions – you maythink of electrons in a solid. Suppose we
have no magnetic field. Then, all the properties of the electrons are determined by the density of states
D(ε) (see the previous section). Once we know this function, all relevant physical quantities can be
determined. The important issue now is that this density of states does not depend on the spin degrees
of freedom (this is a direct consequence of the fact thatB = 0). If the magnetic field is switched on,
the only thing which changes is that the energies are shiftedover±µ∗B, where the sign depends on
the spin. Note thatµ∗ is the magnetic moment – it should not be confused with chemical potential
which isµ without the asterisk.

First we analyse how the chemical potential changes with themagnetic field. We do this by
calculating the total number of particles and then require that this is constant:

N = N+ +N− = ∑
i

[ f+(i)− f−(i)]

where the sum is over theorbital statesi; f± are the Dirac functions for the appropriate spin state.
A sum over the orbital states can however be replaced by an integral over the energy if we insert the
density of states:

N =
1
2

∫

dε [D(ε) f (ε −µ∗B)+D(ε) f (ε + µ∗B)] .

The integral is over theorbital energies, and the magnetic field only enters in the Fermi distribution
functions. The factor 1/2 in front of the integral takes intoaccount thatD(ε) includes up- and down
spins. Now we assume that the fieldB is very small (i.e.µ∗B smaller thankBT). Then we can expand
the distribution functions aboutB = 0:

f (ε ±µ∗B) ≈ f (ε)±µ∗B f ′(ε)+
(µ∗B)2

2
f ′′(ε).

Substituting this back into the integral expression forN, we have

N =

∫

dε D(ε) f (ε)+O(B2)+ . . . .

We see that to first order inB the density does not change if we keep the chemical potentialconstant;
hence we conclude thatµ varies withB only to second order.

We are interested in how the system reacts to an applied field,that is, we want to calculate the
magnetisation as a function of the field strengthB. The magnetisation is given as the difference
between the number of spin-up and -down electrons:

M = µ∗(N+−N−) = µ∗∑
i

[ f+(i)− f−(i)]

where the sum is over theorbital statesi – f± are the Dirac functions for the appropriate spin state.
The sum over the orbital states can again be replaced by an integral over the energy:

M =
µ∗

2

∫

dε [D(ε) f (εi −µ∗B)−D(ε) f (εi + µ∗B)] .

Substituting the same Taylor expansion for the distribution functions as above, we obtain:

M = µ∗2B
∫ ∞

0
dε D(ε) f ′(ε).
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For smallT, the Fermi function decays rapidly from 1 to 0 near the Fermi energy, hencef ′(ε) ≈
−δ (ε − εF). Using this, we obtain

M ≈ µ∗2BD(εF).

Themagnetic susceptibilityχ tells us how the magnetisation varies with the field:

χ =
dM
dB

= µ∗2D(εF).

We see that measuring the susceptibility at low temperatures tells us what the density of states near
the Fermi level is.

For the free electron gas, the density of states was found in the previous section – we find for the
susceptibility in this case

χ =
3
2

µ∗2

εF
.

For higher temperature, the susceptibility can be expandedin powers ofkBT; the result is

χ ≈ 3
2

µ∗2

εF

[

1− π2

12
kBT
εF

+ · · ·
]

.

7.3.3 Landau diamagnetism

Electrons moving in a solid have a magnetic moment not only asa result of their spin, but also as a
result of their orbit. This is called theorbital magnetic moment. If we apply a magnetic field in thez-
direction, the particles will have quantized field levels associated with thex- andy degrees of freedom.
In addition, they have an energy associated with their motion in thez-direction. The spectrum is given
by

ε( j, pz) =
eℏB
m

( j +1/2)+
p2

z

2m
.

This problem has been treated in the exercise class of your quantum course (believe it or not).
For evaluating particle numbers and magnetisations, we need to know the density of states, in other

words themultiplicity of these levels. This holds in particular for thex andy degrees of freedom, as
we can simply perform an integral overpz when summing over all states. It can be argued that the
multiplicity for the energy levels associated with the orbital motion in thexyplane is given by

D( j) = LxLy
eB
h

.

We can then evaluate the number of particles and the magneticmoment. This is most easily done by
first evaluating the grand partition function:

Z = ∏
i

[

1+eβ(µ−εi)
]

.

We then have, withz= exp(β µ):

lnZ = ∑
i

ln
[

1+ze−βεi

]

.

The indexi denotes the states, which for our particular problem are defined bypz and j:

lnZ =
∫

Lz

2πℏ
dpz

∞

∑
j=0

LxLz
eB
h

ln

[

1+zexp

{

−β
[

eℏB
m

( j +1/2)+
p2

z

2m

]}]

.
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This partition function can be evaluated in the classical limit, wherez≪ 1. Expanding the argument
of the logarithm, we get

lnZ =
zVeB
h2

∫

e−β p2
z/(2m)dpz

∞

∑
j=0

e−βeℏB( j+1/2)/m =
zVeB

h2 (2πmkBT)1/2 1
2sinh[eℏB/(2mkBT)]

.

Now the desired quantities can easily be evaluated. Withλ = h/(2πmkBT), x= βBeh/(4πm) and
µeff = eh/(4πm), we have

N = z
∂Z

∂z
=

zV
λ 3

x
sinhx

and

M =
1
β

∂
∂B

lnZ =
zV
λ 3 µeff

[

1
sinhx

− xcoshx

sinh2x

]

.

We can write
M = −NµeffL(x),

whereL is the Langevin function
L(x) = cothx−1/x.

The result we have obtained is similar to that of 3.9, except for a minussign. This means that the
magnetisation is now opposite to the field – this effect is called diamagnetism.
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Statistical mechanics of interacting systems: the
method of cluster expansions

Up to this point we have considered ideal gases only. These were sometimes derived from interacting
systems, such as systems with harmonic interactions (e.g. crystal lattices) which could be transformed
to a system of independent oscillators.

In general, however, we cannot transform away the interaction like we have done in these har-
monic systems. The interaction then plays a relevant role. In this chapter, we consider a method for
evaluating the correct equation of state, which for a classical ideal gas reads:

PV = αNkBT

with α = 3/2 for a noninteracting system in 3 dimensions andα = 3 for a system of uncoupled
harmonic oscillators.

Relevant interactions are those which are described in terms of pair-interactions, i.e., which are
written as

V(r1, . . . , rN) = ∑
i< j

u(|r i − r j |).

Important examples of pair interactions are the hard sphereinteraction:

u(r) =

{

∞ for r < a;

0 for r ≥ a,

and the Lennard-Jones interaction

uLJ(r) = 4ε
[

(σ
r

)12
−
(σ

r

)6
]

.

This interaction is shown in figure 8.1.

8.1 Cluster expansion for a classical gas

In the analysis of the classical gas, we have seen that the partition function always factorises into an
integral over the momenta, involving the kinetic energy, and an integral over the orbital coordinates:

QN(T) =
1

h3NN!

∫

exp

{

−β

[

N

∑
i=1

p2
i

2m
+V(q1, . . . ,qN)

]}

d3N pd3Nq.

53
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Figure 8.1: The Lennard-Jones potential.

The integral over the momenta can be performed analytically(it is a product of elementary Gaussian
integrals):

QN(T) =
1

N!λ 3N ZN(T,V)

with

ZN(T,V) =

∫

exp

[

−β ∑
i< j

u(r i j )

]

d3Nr.

Thecluster expansionis a way to systematically evaluate the so-calledconfiguration integral ZN.
So, how does it work? The idea behind the cluster expansion isto include first only the interactions

between particle pairs, then between triplets, and larger and larger clusters. But if we want to neglect
contributions beyond a certain cluster size, we must have some expressions which vanish rapidly
beyond some interaction range. Clearly, the factors exp[−βu(r)] do not decay to zero – they will
tend to 1 for large separation since the interaction then vanishes. Therefore we introduce theMayer
functions f, defined as

f (r) = exp[−βu(r)]−1,

which indeed decay to 0 for larger. Figure 8.2 shows the Mayer function for the Lennard-Jones
potential.

Using the Mayer function, we immediately see that the configuration integral can be written as

Z(N,V,T) =
∫

d3Nr e−β ∑i< j u(r i j ) =
∫

d3Nr ∏
i< j

e−βu(r i j ) =
∫

d3Nr ∏
i< j

[1+ f (r i j )] .

We shall use the notationf (r i j ) ≡ fi j from now on.
If we write out the product occurring in the integral forZ, we obtain

∏
i< j

[1+ fi j ] = 1+ ∑
i< j

fi j + ∑
i, j;k,l

′
fi j fkl + ∑

i< j<k

fi j f jk fki + · · · .



55

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3

VLJ(r)

f (r)
ij

r

Figure 8.2: The Lennard-Jones interaction potential and the Mayer function.
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Figure 8.3: Some cluster configurations. The top left cluster corresponds to the lowest order term; the other two
are the second order terms.

The sum with the prime∑′ is over all possible pairsi, j andk, l which are distinct. Note however that
we still include configurations of the formi, j; j,k. In figure 8.3 we indicate the possibilities. Note
that the actual expansion consists of a sum overall possibleconfigurations. This means that we have
a sum overall distinct pairsin the first order term, and a sum over all ‘distinct pairs of distinct particle
pairs’, a sum over all possible triplets, . . . .

It is clear that the first order term containsN(N− 1)/2 pairs. The second order term contains
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N(N−1)(N−2)(N−3)/8 terms of the form corresponding to the upper right part of figure 8.3. This
number is obtained as follows. For the first term we haveN(N−1)/2 possibilities, and for each of
these possiblities we have(N− 2)(N− 3)/2 for the second pair. In order to avoid double counting
of these pairs (corresponding to interchanging pair 1 and pair 2) we must include one more factor
1/2, which leads to the required result. For the terms corresponding to the configuration in the lower
left part of figure 8.3, we haveN(N−1)(N−2)/2 possibilities, and for the lower right part we have
N(N−1)(N−2)/6.

We work out the term
∫

f (r12) d3r1 d3r2 . . .d3rN.

Obviously, the integral over all coordinates exceptr1 andr2 can be performed directly, and we obtain
∫

f (r12) d3r1 d3r2 . . .d3rN = VN−2
∫

f (r12) d3r1 d3r2.

We rewrite the integral overr1 andr2 as one overr1 andr12 = r2− r1. The integral overr1 can be
performed overr1, which yields an additional factorV. As the interaction is short-ranged, and the
volume is large, we do not have to impose additional conditions on the integration overr12, so we
have

∫

f (r12) d3r1 d3r2 . . .d3rN = VN−1
∫

f (r12) d3r12.

Higher terms in the expansion are considered similarly.
Inserting the first two terms of the product expansion in the expression for the configuration inte-

gral and integrating over the coordinates, we obtain

Z = VN +N(N−1)VN−1 1
2!

∫

d3r f (r)+VN−2N(N−1)(N−2)(N−3)

8

∫

d3r1d3r2 f (r1) f (r2)+

VN−2N(N−1)(N−2)

2

∫

d3r1d3r2 f (r1) f (r2)+VN−2 N(N−1)(N−2)

6

∫

d3r1d3r2 f (r1) f (r2) f (r12)+ · · ·

The prefactors (the powers ofV) arise from the integrations over the particles not presentin the clusters
and from the integration over one of the coordinates of each independent cluster itself.

Now we define

b2 =
1
2

∫

d3r f (r)

and

b3 = 2b2
2 +

1
3!

∫

d3r1d3r2 f (r1) f (r2) f (r12).

We then see, noting that
∫

d3r1d3r2 f (r1) f (r2) = 4b2
2,

after some calculation that the expansion for the configuration integral can be written as

Z = VN
[

1+
N(N−1)

V
b2 +

N(N−1)(N−2)(N−3)

2V2 b2
2 +

N(N−1)(N−2)

V2 b3 + . . .

]

Generally, the expansion is built up as follows. We label thedifferent types of clusters by the
index j. A single point (vertex) has labelj = 1; two connected points havej = 2 etcetera. In table 8.1
we list the first five clusters. Obviously,b3 defined above contains the contributions from diagrams
3a and 3b. We calln j the number of vertices in a cluster of typej. The number of ways in which
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Table 8.1: Different types of clusters, their labelling andthe corresponding cluster integrals.

j Graph b j(T)

1 1

2
∫

d3r f (r)

3a 1
2

∫

d3r1d3r2 f (r1) f (r2)

3b 1
3!

∫

d3r1d3r2 f (r1) f (r2) f (r12)

4 1
8

∫

d3r1d3r2d3r3 f (r1) f (r2) f (r3) f (|r1 + r2− r3|)

we can divideN particles intom1 clusters of type 1,m2 clusters of type 2, etcetera is given by the
combinatorial factor

N!

∏ j mj !(n j !)mj

Obviously,N = ∑ j mjn j . For each type of cluster, thecluster integral bj is defined as

b j(T) =
1

n j !V
∑

vertex permutations

∫

d3r1 · · ·d3rnj ∏
i, j

fi j .

Now let’s go back to the expansion containing only the terms to orderVN−2. If we calculate the
free energy, we first have a contribution arising from the momenta, so that we have

A = −kBT ln

[

(

2πmkBT
h2

)3N/2 1
N!

Z(N,V,T)

]

.
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Including the remaining terms, we obtain

A = −kBT ln

[

(

2πmkBT
h2

)3N/2 VN

N!

]

−

kBT ln

[

1+
N(N−1)

V
b2 +

N(N−1)(N−2)(N−3)

2V2 b2
2 +

N(N−1)(N−2)

V2 b3

]

.

Performing a Taylor expansion for the logarithm1, we have

A = A0−kBT

[

N(N−1)

V
b2 +

b2
2

V2

(

N(N−1)(N−2)(N−3)

2
− N2(N−1)2

2

)

+
N(N−1)(N−2)

V2 b3 + . . .

]

= A0−kBT

[

N(N−1)

V
b2−

b2
2

V2 (2N3−5N2+3N)+
N(N−1)(N−2)

V2 b3 + . . .

]

.

If we now use the fact thatN− 1 etcetera can be replaced byN if N is large, we can write this
expansion in terms of the densityn = N/V:

A = A0−kBTN
[

nb2 +n2(b3−2b2
2)+ . . .

]

.

Two important remarks are to be made at this stage:

• The coefficient ofb2
2 is proportional toN as a result of a cancellation of two terms proportional to

N2. This cancellation must happen at all orders of the expansion in order to guarantee that the free
energy scales linearly withN (it is an extensive variable).

• The second order termb3−2b2
2 corresponds to the triangle term

1
3!

∫

d3r1d3r2 f (r1) f (r2) f (r12).

This is a specific example of a feature which occurs at all levels: the diagrams remaining in the
expansion do not contain any lines by which the diagram can becut into two disjoint pieces. The
remaing diagrams are calledstar diagramsor irreducible diagrams. For a general proof of this
fact, you should consult the book of Mayer and Mayer.

Now that we have the partition function, the equation of state can be determined. Using

P = −∂A
∂V

we directly obtain

P = kBTn
[

1−b2n−2(b3−2b2
2)n

2 + . . .
]

= kBTn
[

1+a2n+a3n2 + . . .
]

.

1This expansion should not be read as an expansion for small arguments, but as a formal expansion in terms which could
perhaps be relatively large. The aim is merely to group termswith a particular power ofn = N/V. A better way to perform
the expansion is to move to the grand canonical ensemble, butwe shall refrain from this step for simplicity.
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The coefficients

a2 = −b2 = −1
2

∫

f (r)d3r

a3 = −2b3 +4b2
2 = −1

3

∫

f1 f2 f12dr1 dr2

etcetera, are calledvirial coefficients.
The virial coefficients contain information concerning thepotential. In practice, an educated guess

for the form of the potential is made, which contains severalparameters. An example is the Lennard-
Jones potential which contains two parameters:ε andσ . After measuring the pressure accurately as
a function of the density, the parameters occurring in the potential can be fitted in order to match the
virial coefficients for the model potential to the experimental results.

8.2 The virial expansion and the Van der Waals equation of state

In chapter 11 we shall concern ourselves withphase transitions. These are transitions which take
place when the control parameters are changed and which cause the system to move from a phase
with certain values for thermodynamic properties to a phasewhere these properties are significantly
different. Common example of phase transitions are the liquid-gas transition and the solid-liquid
transition. Also, in magnets phase transitions occur – there they are associated with a change in the
magnetisation.

The first theory which explained the phenomenon of phase transitions was the Van der Waals
theory from 1873. In fact, the Van der Waals theory is based ona particular equation of state, the form
of which can heuristically be motivated as follows.

The ideal gas equation of state reads

PV = NkBT.

Now the volume occurring in this equation is the total volumeof the system. However, in practice,
some fraction of this volume is excluded as the strong repulsive interaction for short particle separation
prevents them from coming too close. This suggests that we replace the volume byV −Nb. It can be
argued thatb≈ 4V0, whereV0 is the volume occupied by the ‘hard core’ of each particle. The fact that
the particles have less space to move in, directly affects the entropic contribution to the free energy.
In fact, the volume-dependent part of the entropic term for the ideal gas

S= kBN lnV,

is now replaced by
S= kBN ln(V −Nb).

To guess the value of the parameterb, we note that for a spherical hard core of volumeV0, the excluded
volume is 8V0. Now let’s putN particles in the volumeV. The first particle does not experience the
presence of other particles. The second particle however has only a volumeV − 8V0 at its disposal.
For the third particle, onlyV −2·8V0 is available etcetera. On average, the excluded volume is

1
N

(0+8V0 +2·8V0 + · · ·+(N−1) ·8V0) ≈ 4NV0.

We see thatb≈ 4V0.
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In addition to this effect, we note that the internal energy is reduced by theattractivepart of the
potential. This term will for each particle be proportionalto the number of particles within the range
of the potential. This number is in first approximation proportional to the density. Forall particles we
have

E = E0−N
N
V

a,

whereE0 is the internal energy of the ideal gas anda is determined by the details of the attractive
potential. The value of the parametera can be guessed as follows. Take a particular particle and
calculate its interaction with the particles nearby. The result is

n
∫

u(r)d3r.

So if we add up this contributions for all particles, and correcting for the double counting of pairs, we
see that

a = −1
2

∫

u(r)d3r.

All in all, we find for the volume-dependent part of free energy

A = −aN2

V
−NkBT ln(V −Nb),

from which the equation of state follows as

P = −∂A
∂V

= −a

(

N
V

)2

+NkBT
1

V −Nb
,

so
[

P+a

(

N
V

)2
]

(V −Nb) = NkBT.

In figure 8.4, the pressure is shown as a function of the volumeper particle for several tempera-
tures. We see that for large temperature, for a particular value for the pressure, only one temperature
can be found. ForT below a treshold valueTc, threevalues for the density are possible. It turns out
that the middle value does not correspond to a thermodynamically stable phase, but the other two do.
Now suppose that we fix the temperature at some value belowTc and lower the pressure. When are
we at the leftmost branch of the curve, and when do we cross over to the right hand? The answer to
this question is given by a thermodynamical argument. Using

E = TS−PV + µN,

we have

µ =
E−TS+PV

N
.

Using the thermodynamic relation

dE = TdS−PdV+ µdN,

we obtain

dµ =
VdP−SdT

N
.
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Figure 8.4: Isotherms for the Van der Waals gas.

As we keep the temperature constant, we have

dµ =
1
N

VdP.

If the phase on the left branch coexists with the phase on the right branch at a given pressure and
temperature, the chemical potentials of these two phases should be equal. This means that we must
have:

∫

dµ =
∫

VdP,

which means that the hatched area in figure 8.4 must be zero.
Now we compare the Van der Waals equation of state to the cluster expansion. Starting from

P =
NkBT

V −Nb
−a

(

N
V

)2

=
NkBT

V

[

1+

(

b− a
kBT

)(

N
V

)

+b2
(

N
V

)2

+b3
(

N
V

)3

+ . . .

]

.

Comparing this with the virial expansion for the pressure, we see that

a2 = b− a
kBT

a3 = b2

etcetera.
Now let’s work out the first virial coefficienta2 for low temperatures:

a2 =
1
2

∫

(e−βu(r)−1)d3r ≈ 4V0 +
1

2kBT

∫

u(r)d3r = b− a
kBT

.

We see that this matches precisely the expansion of the Van der Waals equation of state! This unfor-
tunately does not hold for the higher orders. The Van der Waals expansion approximates the effect of
the hard core by the series

1+4V0n+16V2
0 n2 +64V3

0 n3 + . . .
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whereas the correct series from the cluster expansion yields

1+4V0n+10V2
0 n2 +18.4V3

0 n3 + . . .

The Van der Waals equation takes part ofall higher virial coefficients into account. That is the
reason why it can predict the phase transition behaviour rather well.
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The method of quantized fields

9.1 The superfluidity of helium

If liquid helium is cooled down to a temperature of 2.17 K, it becomes a ‘superfluid’. This means that
helium which flows through a pipe, cannot lower its energy by interactions with the pipe, so that it
moves without friction. This curious phenomenon can be understood using techniques of statistical
quantum field theory.

Helium-4 consists of atoms, which normally have integer spin (spin=0). This means that these
atoms could form a Bose-Einstein condensate at low temperatures. Strictly speaking however, the fact
that helium forms a liquid at low temperatures, tells us thatthe interactions between the atoms become
important, and so far, a Bose-Einstein (BE) condensate has been studied in the case of noninteracting
particles. Nevertheless, a kind of BE condensation can alsotake place in the case of interacting
systems, provided a description in terms of noninteractingparticles is appropriate for the system at
hand. You may compare this with the description of electronsas independent particles in the solid:
we consider the particles moving in a potential which is represents theaverageinteraction potential
of each particle with its counterparts.

The phenomenon of superfluidity has been brought in connection with a BE condensate a long
time ago. It is assumed that a finite fraction of particles occupies the same quantum state, and that
this state does not experience any friction with walls. A wayto see this is to consider a flow with
speedv of helium thourgh a pipe of massM. If we place ourselves in the rest frame of the liquid,
we see the pipe moving with a speedv in the opposite direction. Now suppose that the liquid and the
pipe exchange momentump. This implies that the momentum of the helium becomesp (before the
exchange, the helium was at rest) and that that of the pipe is decreased by an amountp. The energy
of the pipe with momentumP is given as

E =
P2

2M
.

For the helium we assume a relation between energy and momentum given as∆ + ε(p), which can
either be determined by experiment (scattering experiments) or theoretically.

We can now setup the energy balance between the helium and thepipe:

ε(p) =
P2

2M
− (P−p)2

2M
.

From this we have, usingv = P/M and lettingM → ∞:

ε(p) = v ·p+
p2

2M
≈ v ·p.
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Figure 9.1: Dispersion relation for helium.

It turns out thatε(p) has a shape depicted in figure 9.1.
Now suppose that the pipe would cause excitations of the helium. Then, in order for the container

to have available such an amount of energy, we should have

pv> ε(p).

It is seen from figure 9.1 that this is possible only in case thespeed is large enough. The fastest speed
at which no energy transfer is possible corresponds to the straight line in figure 9.1 which is tangent
to the energy-momentum curve. For such low velocities, energy transfer is not possible which means
that helium is superfluid.

If the energy-dispersion curve is measured, the critical velocity can be determined; it turns out to
be 60m/s, much higher than the critical velocity which was measured directly in experiments. The
difference can be explained by considering rotational motion in the superfluid. It is in this context
important to realise that if helium is superfluid as a result of BE condensation, only a finite fraction of
the liquid is in the ground state, and the rest is in a normal state. We can express this by splitting the
total density in a normal and a superfluid fraction:

ρ = ρs+ ρn.

The superfluid fraction of the liquid consists of particles which are all in the same stateΨ(r) which
can be written in the form:

Ψ(r) = a(r)eiγ(r).

The superfluid number density is given by

ρs(r) = a2,

and the mass flow is given by the quantum mechanical expression of the flux:

j(r) =
ℏ

2im
[Ψ∗(r)∇Ψ(r)−Ψ(r)∇Ψ∗(r)] =

ℏ

m
a2∇γ(r).
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Given the fact that the flow is density× velocity, we see that for the velocity we have

us =
ℏ

m
∇γ(r).

We see that the flow can be considered as a gradient of a function, just as the force is a gradient of a
potential. The functionγ(r) plays the role of the potential. For such a flow we have

∇×us = 0.

(In the analogue of classical mechanics this equation expresses the fact that the work done along a path
only depends on the start and end point of that path). This last condition seems to prohibit circular
flows. For example, in the case where the fluid would rotate in acylinder, we should have at each
point r :

v = ωωω × r ; ∇×v = 2ωωω ,

whereωωω is the angular velocity. We see that the second equation is certainly incompatible with a
potential flow field (ie. a flow derived from a potential as sketched above).

The expectation that superfluid helium cannot rotate was checked by putting helium inside a ro-
tating cylinder (‘rotating bucket experiment’). For a normal fluid, the meniscus assumes the shape

z(r) =
ω2r2

2g

which can easily be checked by minimising the total energy ofthe fluid as a function ofz(r). In
experiments, although only the normal fraction was supposed to contribute to the rotation, causing the
above relation to be modified to

z(r) =
ρn

ρ
ω2r2

2g
,

the experiment showed that also the superfluid fraction participated in the rotation.
The explanation for this fact comes from the notion that the functionγ(r) is not a usual potential:

it is aphaseand hence defined modulo 2π. Therefore, we may satisfy the condition

∇×v = 0

without the usual relation following from it:
∮

us ·dl 6= 0.

In order to prove the latter relation, we must assume that∇× v = 0 holds in a region of the plane
without holes in it. We can circumvent this condition by assuming that the superfluid rotates around
an axis, but that the ‘core’ of this ‘vortex motion’ is not superfluid.

When we follow a path surrounding the vortex core, we have
∮

∇γ ·dl = 2πn, n integer.

Therefore we have
∮

u ·dl =
nh
m

.

From this, we read off two striking features: (i) the rotational velocity of a vortex isquantizedand (ii)
this velocity depends directly on Planck’s constant.
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9.2 The low-energy spectrum of helium

In this section we want to derive the low-energy spectrum of helium from the microscopic Hamilto-
nian:

Ĥ = ∑
k

ℏ
2k2

2m
b†

kbk +
1

2V ∑
k,k′,q

vqb†
k+qb†

k′−qbk′bk .

In order to make the Hamiltonian tractable, we restrict ourselves to a delta-function potential, for
which

vq = u0, for all q.

Secondly, we analyze the system in the case where the part of the helium which is in the superfluid
phase much larger than the part which is the normal phase. In fact, forN particles, we haveN0 in the
superfluid phase, and we consider the case where

N−N0 ≪ N.

In that case, an operator term containingb†
k+qb†

k′−qbk′bk with k +q, k ′−q, k andk ′ being nonzero, is

negligible (it scales with(N−N0)
2, in comparison to terms where two subscripts are zero, and which

scales as(N−N0)).
This means that we must single out all possibilities where atleast twob’s have subscript zero.

This is possible in seven different ways:

• q = k = k ′ = 0;

• q = −k, k ′ = 0;

• q = k ′, k = 0;

• k = k ′ = 0; q 6= 0;

• k = q = 0; k ′ 6= 0;

• k ′ = q = 0, k 6= 0;

• q = k ′ = −k 6= 0.

We then are left with (∑′
k means thatk = 0 is excluded):

Ĥ =
u0N2

0

2V
+∑′

k

ℏ
2k2

2m
b†

kbk +
u0N0

2V ∑′
k4b†

kbk +b†
kb†

−k +bkb−k =

u0[N2
0 +2N0(N−N0)]

2V
+

u0N0

2V ∑′
k

ℏ
2k2

2m
b†

kbk +∑′
k2b†

kbk +b†
kb†

−k +bkb−k .

Using the fact thatN2
0 +2N0(N−N0)

2 ≈ N2, we have

Ĥ =
u0N2

2V
+∑′

k

ℏ
2k2

2m
2b†

kbk +
u0N0

2V ∑′
k

(

2b†
kbk +b†

kb†
−k +bkb−k

)

.

For a fixed total number of particles, the first term is fixed andcan be neglected. The fact that half
of the term 4bkb†

k in the potential energy has been split off and approximated,cannot be justified
within the approach in which we analyse the low energy states. The correct treatment of the problem
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should include the chemical potential, which precisely cancels this term. A correct treatment of this
is presented in the book of Fetter and Walecka.

The question is now what the eigenvalues of this Hamiltonianare. To solve this problem, we note
that the Hamiltonian is essentially a quadratic expressionof theb-operators, and a quadratic form can
be put in diagonal form by a linear transformation. In this case we must however take care that the
linear transformations are chosen such that the operators still satisfy tractable commutation relations.
The proper choice, first made by Bogoliubov, is:

bk = ηk coshθk −η†
−k sinhθk ;

b−k = η−k coshθk −η†
k sinhθk .

It is straightforward to check that theηk satisfy the proper boson commutation relations:
[

ηk ,η†
k

]

= 1.

If we substitute the new expression for thebk in terms of theηk into the Hamiltonian, we obtain
an off-diagonal contribution:

Ho.d. = −∑′
k

[

ℏ
2k2

2m
+

u0N0

V

]

coshθk sinhθk

(

η†
k η†

−k + η−kηk

)

+

u0N0

V ∑′
k

(

cosh2 θk +sinh2θk
)

(

η†
k η†

−k + η−kηk

)

.

We see that these off-diagonal terms vanish when

tanh2θk =
u0N0/V

ℏ2k2

2m +u0N0/V
.

Substituting this into the expression for the diagonal part, we are left with

H = ∑′
k

√

(

ℏ2k2

2m

)2

+2
u0N0

V
ℏ2k2

2m
ηkη†

k +∑′
k





√

(

ℏ2k2

2m

)2

+
2u0N0

V
− ℏ

2k2

2m
− u0N0

V



 .

From this, we can immediately infer the energy eigenvalues with respect to the ground state:

E(k) =

√

(

ℏ2k2

2m

)2

+2
u0N0

V
ℏ2k2

2m
.

For smallk, we see that the second term in the square root dominates, andwe see that the energy is
linear ink.

Note that the elementary excitations are linear combinations of the single-k modes which describe
single-particle excitations: the elementary excitationsdescribe excitation quanta, and are generally
denoted as ‘quasi-particles’. The simples example of a quasi-particle is the energy quantum of a
harmonic oscillator. Here, a there is only a single vibrating particle. However, the theory does not see
the difference between the energy quanta of this system and ‘particles’ of energyℏω which can be
created and destroyed by the ladder operatorsa±.
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Introduction to phase transitions

10.1 About phase transitions

The most common examples of phase transitions are the freezing and boiling of ordinary water. These
transitions are associated with an abrupt change of the density in the case of boiling, and a sudden
emergence of order in the case of freezing. These fascinating phenomena have for long time been
poorly understood. It seems paradoxal that although we believe the world around us to be governed
by smooth functions and differential equations leading to analytical solutions, we see such abrupt,
non-analytic behaviour. In the first half of the twentieth century it has become clear that the reason for
this nonanalytic behaviour lies in the fact that macroscopic objects (such as a glass of water) consist of
large (almost infinite) numbers of molecules: a function depending on a paremeter, which is analytic
for every finite value of that parameter, may become nonanalytic if the parameter becomes infinite.

A phase transition is always characterised by a sudden change in the degree or the type of order in
the system. In order to analyse phase transitions, it is necessary to always identify a parameter which
characterises the degree and/or type of order present in thesystem. This parameter is called theorder
parameter. In the case of the boiling of water, the density is the properorder parameter. In the case
of freezing, it might be the structure factor.

The first theory of phase transitions which gave excellent results was the Van der Waals theory.
We have discussed this at the end of chapter 8 of the notes and it is recommended that you go back
and study this theory once again. There exist however other types of phase transitions than freezing
and boiling, and an instructive system for studying phase transitions more generally is the system in
which the degrees of freedom reside on lattice sites, and canassume only two different values, which
we call + and−. The model describing such a system is the famousIsing model. In two dimensions,
the system is formulated on a square lattice (in fact, different choices for the lattice can be made, but
the square lattice is quite popular): on each lattic point, aspin-up or -down can be placed. For aN×N
lattice, there are thus 2N2

possible configurations. We may consider the spins as magnetic moments
which obviously interact – usually, the interaction is limited to nearest neighbours. Furthermore,
there may be an external magnetic field present which favoursall spins to be either + or−. These
considerations lead to the following Hamiltonian:

H = −K ∑
〈i j 〉

sisj −h∑
i

si .

What will be the behaviour of the model? To answer this questions, we start by examining the ground
state, which will be the phase at absolute zero. The first interaction favours all spins to be equal: all
spins + or all spins−. If the magnetic fieldh is zero, these two phases have the same energy and
the system will choose either one or the other. For a positivefield, the positive magnetisation will
be favoured, whereas for negative field, the opposite sign isthe stable phase. Now let us consider

68
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Figure 10.1: The magnetisation of the Ising model as a function of temperature for zero field.

the h = 0 case at nonzero temperatures. This case is interesting because the Hamiltonian yields the
same value for any particular configuration as for the one in which all spins are reversed. At very high
temperatures,β → 0, the interactions between the spins become irrelevant, and their values will be
completely random. This means that the averagemagnetisation, defined as the average value of the
spins, will be zero. One now might think that the magnetisation will decay with increasing temperature
to reach zero atT → ∞, but this turns out not to be the case. The magnetisation assumes a value zero
above afinite temperature. The magnetisation is shown in figure 10.1.

The Ising transition occurs in two dimensions atK/(kBT) = 0.44. . .. Suppose the system starts
at high temperature and is then cooled down. When the system passes the transition temperature,
the phase in which all spins have either the value +1 or−1 must be chosen. Which of the two
will be the low-temperture phase is not known beforehand. Once the system chooses one of the two
values, the symmetry between up- and down is broken. This phenomenon is calledsymmetry breaking,
sometimesspontaneous symmetry breaking, as it is not imposed by changing the model itself – it is a
well-known phenomenon which is relevant in many areas of physics and astronomy.

The behaviour close to the transition point is interesting.Physical quantities usually vary as broken
algebraic power functions of the system parameters. As an example, consider the variation of the
magnetisation when the transition temperature is approached from below. It turns that then in 2D and
on a square lattice,

m∼ |T −Tc|1/8 .

This behaviour is only one example of many similar ones. The parameterβ = 1/8 (do not confuse this
β with 1/(kBT)!) is calledcritical exponent. There exist other critical exponents for other physical
quantities and/or parameters:

χm =

(

∂m
∂h

)

T
∝ |T −Tc|−γ ;

ch(T) ∝ |T −Tc|−α

ξ (T) ∝ |T −Tc|−ν

m(T) ∝ (−T +Tc)
β ; T < Tc
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and, moreover, we have an exponent for the behaviour of the magnetisation with varying small mag-
netic field at the transition temperature:

m(h,Tc) = h1/δ . (10.1)

For the case of the two-dimensional Ising model on a square lattice, we know the values of the expo-
nents from the exact solution:

α = 0, β = 1/8, γ = 7/4,

δ = 15, ν = 1. (10.2)

For nonzero magnetic field, the magnetisation will always bealong the field, except for infinite
temperature. The phase transition no longer occurs for nonzero field. If we consider however the
magnetisation as a function of the external field for fixed temperature (which is taken below the phase
transition temperature), then we see a sudden flip of the magnetisation which jumps from positive to
negative or vice versa. This is also a phase transition, but of a different kind than the one described
above, in which the magnetisation is a continuous function of the parameter which is changed (the
temperature in that case). We shall from now on focus on the second kind of phase transition, which
is calledcritical, continuousor second order, as opposed to transitions in which the order parameter
jumps discontinuously, and which are calledfirst order transitions. The order refers to the derivative
of the (free) energy which jumps or is continuous.

10.2 Methods for studying phase behaviour

The results given in the previous section for the behaviour of the Ising model can be derived in various
ways. First of all, the Ising model in two dimensions on a square lattice was solved for zero field
analytically by Lars Onsager in 1944. This is one of the most important results obtained in theoretical
physics of the 20th century. However, for nonzero field, no analytic solution is possible, although
some progress has been made in recent years. Also for the Ising model on a triangular lattice, an
analytic solution was obtained by Houtappel in 1950. For three dimensions, no such solutions exist,
nor for Ising models including farther than nearest neighbour interactions.

Many results concerning spin models can be obtained using Monte Carlo techniques which are
performed on a computer. In a nutshell, these methods boil down to the following: in a computer, a
spin is chosen at random. Then the energy cost or gain associated with flipping that spin is calculated.
Suppose this cost is∆E. If ∆E < 0, that is, if there is an energygain by flipping the spin, the spin is
actually flipped. If, on the other hand, there is an energycostassociated with the spin flip, then the
spin is flipped with probability

P = exp(−β∆E).

Performing a spin flip with this probability is done as follows. A random number between 0 and 1 is
chosen . If this number is smaller than exp(−β∆E), the spin flip is carried out, the flip is performed,
else the spin is not flipped. The Monte Carlo algorithm leads to configurations occuring with a prob-
ability proportional to exp(−βE) as required in the canonical ensemble. This can be seen as follows.
Consider the probabilityPρ(t) that at some instance of timet, the system is in some stateρ . The
change inPρ is due to the combined effect of the system leaving the stateρ at the next step to enter a
stateσ , and entering the stateρ from any different stateσ . The first type of event results in a decrease
of Pρ and the second one in a gain. All in all we have

Pρ(t +1)−Pρ(t) = ∑
σ

[

−T(ρ → σ)Pρ +T(σ → ρ)Pσ
]



71

whereT(ρ → σ) is the probability to go to stateσ provided the system was in a stateρ . If the
probability distributionPρ becomes stationary, we have

T(ρ → σ)

T(σ → ρ)
=

Pσ

Pρ
.

For the Boltzmann distribution, we have

Pσ

Pρ
= exp

[

−β (Eσ −Eρ)
]

= exp(−β∆E) .

The Monte Carlo method is flexible in the sense that in principle any dimension and many types of
interaction can be treated in this way, but in practice, the results are subject to statistical errors and
will be not infinitely accurate. It is however important thatapart from the finite size of the system, no
systematic approximation is introduced.

A method for obtaining analytic results is themean field approximation. This approximation oc-
curs in many different forms, but always boils down to replacing the interactions between a particular
particle and its neighbours by the average value of the interactions between that particle and all its
neighbours. We shall now sketch the mean field approximationfor the Ising model. On the Ising
lattice, each site has a number of neighbours, which we callq, the coordination number. For the
(hyper)cubic lattice inD dimensions, the coordination number is 2D which gives indeed 2 neighbours
in 1 dimension, 4 neighbours in 2D and 8 in 3D. We can rewrite the Hamiltonian in the form:

H = K ∑
〈i, j〉

(si −m+m)(sj −m+m)−h∑
i

si =

− K
2

qNm2− (h+Kqm)∑
i

si −K ∑
〈i, j〉

(si −m)(sj −m)≈−K
2

qNm2− (h+Kqm)∑
i

si .

(the numberN represents the number of lattice sites). In the last expression, we have neglected the
quadratic contribution of fluctuations of the magnetisation around its equilibrium value. We want to
find the average magnetisationm = 〈si〉, wheresi is the average value of the spin, which does not
depend oni for a homogeneous Hamiltonian (we assume the Hamiltonian satisfies periodic boundary
conditions so that a site on the edge of the lattice couples tothe corresponding site on the opposite
edge, see figure 10.2). This can easily be done as the partition function has been reduced to that
of uncoupled spins, interacting with a ‘field’ which incorporates the contribution from the average
magnetisation. Now we can evaluate the free energy by factorising the partition function:

F = −kB lnZ = −kBT ln

{

e−βKqNm2/2∏
i

∑
si

[

eβ(qmK+h)si

]

}

.

This expression can be evaluated as

F =
K
2

qNm2−kBTNln{2cosh[(Kqm+h)/kBT]} .

Note that this expression for the free energy still containsthe unknown average magnetisationm. We
can evaluate this from our mean-field Hamiltonian:

m= 〈si〉 =
eβ(qmK+h) −e−β(qmK+h)

eβ(qmK+h) +e−β(qmK+h)
= tanhβ (qmK+h) .
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Figure 10.2: Periodic Boundary conditions in the Ising model.
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Figure 10.3: The self-consistency relation for the Ising model for different values of the parameterqJ = βqK.

We see that this is a self-consistency relation form: on the right hand side,m is the average magneti-
sation which we imposed before evaluating the very same quantity, which we have evaluated as the
result on the left hand side. Obviously, the two should be thesame. In figure 10.3, we show the left-
and right hand side as a function ofm for h = 0 and for different values of the parameterβqK ≡ qJ.
The self-consistent values for the magnetisation correspond to acceptable values. We see that the
number of such points depends on the value ofqJ. For qJ < 1, there is only one intersection point,
at m= 0. ForqJ > 1, there are three such points, two of which have opposite nonzero values ofm,
and still the point atm= 0. Which of these three points will the system choose. Considering the free
energy, it turns out that them= 0 corresponds to a higher value of the free energy than the nonzero
values, which give an equal value of the free energy. Therefore, the system will choose one of these
two. The phase diagram is therefore the same as the one described in the previous section, except for
the location of the critical point, which now lies atβK = 1/q, which is 0.25 in two dimensions.
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We can now calculate the critical exponents for the Ising model. First we analyse the magnetisa-
tion as a function of temperature. We can expand the tanh function on the right hand side:

m= qJm− 1
3
(qJ)3m3 + . . .

from which we obtain, writingqJ = Tc/T:

m= ±
√

3

√

1−
(

T
Tc

)

.

Thus we see that the exponentβ is found to be 1/2, quite different from the exact resultβ = 1/8 for
2D (see above). It seems that the mean field approximation cancause large errors in the exponents.
For 3D, the exponentβ is 0.324, which is already quite a bit closer to the mean field value. It turns
out that for dimensions greater than four, ordinary critical points have indeedβ = 1/2. In general, the
mean field approximation becomes better with increasing dimension. The reason behind this is that in
the mean field approximation, we neglectcorrelations. This means that the values of the neighbours
of a+ spin differs from those of the neighbours of a− spin. Above, we have however replaced these
values bym, irrespective of the value ofsi . In higher dimensions (or when a spin has very many
neighbours) these correlations become less important and the mean field result becomes more and
more reliable. Mean field theory is very successful in systems with long range interactions.

Now let us calculate the other critical exponents. Now we study howmvaries withh at the critical
point. This means that we must setqJ = 1 and then include the magnetic field into the expression for
m and see how the latter varies withh. The procedure is similar to that followed in calculatingβ : we
simply must replaceqJmby m+h/kBT

m= (m+
h

kBT
)− 1

3
(m+

h
kBT

)3,

from which it follows that

m=

(

3h
kBT

)1/3

,

giving δ = 3, to be compared withδ = 15 for the 2D Ising model on a square lattice.
The magnetic susceptibility is defined as

χ =

(

∂m
∂h

)

T
.

Differentiating the self-consistency relation at arbitrary T with respect toh and then puttingh → 0
yields

χ =

(

Tc

T
χ +

1
T

)

(

1−m2) ,

from which we have

χ =
1−m2

kB [T −Tc(1−m2)]
.

ForT > Tc, m= 0 and we see thatχ ∼ |T−Tc|, henceγ = 1, to be compared withγ = 7/4 for the 2D
Ising model on a square lattice.
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For T < Tc, the calculation of the exponent proceeds a bit differently. We havem≈
√

3/Tc(Tc−
T)1/2; putting this into the above equation leads to

χ =
1

kB(Tc−T)

which again leads toγ = 1.
Finally, we consider the exponent of the specific heat. Firstwe note that the energy forh = 0 is

given by

E =
∂βF
∂β

= −1
2

KqNm2

where we have used the self-consistency relation to replacethe tanh occurring in the second term by
m. The specific heat is calculated as

Ch =

(

∂E
∂T

)

h
= 0 for T > Tc,

where we have used the fact thatm= 0 for T > Tc. ForT < Tc, we have

Ch =
3
2

KqN
Tc

=
3
2

kBN.

This tells us that the critical exponentα = 0, which is the same as in the 2D Ising model on the square
lattice.

The behaviour of correlations is generally seen from thecorrelation functionThis function is
defined as

g(|r i − r j |) =
〈

sisj
〉

=
1
Z ∑

{i}
sisj exp(−βH).

Note that now,i and j are not necessarily neighbours. For short distances, usingthe absolute value
on the left hand side is not justified as the expression on the right hand side is anisotropic. For longer
distances however, the correlation function becomes more or less isotropic, and the absolute values
are justified. The shape of the correlation function is nearly always exponential, with a typical length
scale, which is called thecorrelation length, ξ :

g(r) ∼ exp(−r/ξ )−m2.

The termm2 is the value which we expect for long distances: the average values of the spinssi andsj

are not correlated and equal to the single-site averagem. The distanceξ over which the correlations
decay increases when the critical point is increased. In fact, we have seen above that the correlation
length diverges near the transition point according to a scaling law with the critical exponentν = 1.
At the critical point, the correlation function changes from exponential to algebraic:

g(r) ∼ 1
rx ,

wherex is another example of a critical exponent.
If the correlation function decays with a given exponentξ , a rescaling of the physical space will

change the correlation length accordingly. If however, we have an algebraic decay of the correlation
function, it does not change its shape under a recalingr → br:

g(br) ∼ 1
bx

1
rx ∼ 1

rx .
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This behaviour is a manifestation of the fact that the systemis scale invariant. If we would look at
an Ising model from a distance from nearby, and we would not notice the anisotropy of the lattice at
short scales, the picture looks the same.Fractals are examples of scale-invariant objects. An Ising
model at the critical point is an example of a fractal structure.

10.3 Landau theory of phase transitions

Suppose we fix the magnetisation of our Ising model to the value m. When we evaluate the partition
function, we can no longer sum over all possible configurations with si = ±, but we must restrict
ourselves to those configurations for which the total magnetisation sums up toNm. If we do so, the
free energy as calculated from this partition function is the free energy evaluated for the particular
value of the magnetisation we started with. Note the difference with the mean field approximation:
there we started with callingm the average magnetisation which was to be calculated; here we fix a
priori the magnetisation to its predefined value. From the expression for the free energy:

F = −kBT lnZ, with

Z = ∑
{si}

′
exp

[

J ∑
〈i, j〉

sisj +bm

]

,

whereb = βh and the primed sum denotes the restricted sum over the configurations with magnetisa-
tion m, we see that

F = −hm−kBT ln ∑
{si}

′
exp

[

J ∑
〈i, j〉

sisj

]

.

Note that the second term should be even inm as it does not have any preference for up- or down
directions. Close to the critical point, the magnetisationis small, and we may expand the free energy
in m;

F = −hm+q+ rm2+sm4 + . . . .

The Taylor coefficentsq, r, s, . . . depend on temperature. In fact, instead of temperature, we prefer
using thereduced temperature tas a parameter:

t =
T −Tc

Tc
.

Close to the critical pointt is small.
A system at fixed temperature will occupy, at its equilibrium, states which correspond to a min-

imum of the free energy. Therefore, if we now relax the valuem, we know that the minima ofF as
a function ofm correspond to equilibrium. Cutting off the expansion beyond the fourth order term,
in order for the free energy to be acceptable, we should haves> 0, otherwise the free energy would
be lowest at largem which is clearly invalid close to the critical point. The parameterq furthermore
can be set to zero by a suitable redefinition of the zero of energy, which as usual does not affect the
physics of the problem. We furthermore study first the case whereh = 0. We then have

F = rm2 +sm4,

with s > 0. Note thatr ands are functions of the temperaturet. In figure 10.4 we showF(m) for
several values ofq. We see that forr > 0 there is only one minimum of the free energy atm= 0. This
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Figure 10.4: The free energy in the Landau expansion for variousr.

.

minimum turns into a maximum forr < 0 and is accompanied by two minima at±ms, wherems is the
value of the spontaneous magnetisation.

From the Landau theory, we can again derive the critical exponents. For example, the exponent
β is found by analysing howm goes to zero whent approaches 0. The assumption is that the Taylor
coefficients are regular functions oft. We know that criticality corresponds tot = 0 andr(t) = 0.
Aroundt = 0, r andsbehave as

r(t) = r1t, s= s0 +s1t,

wherer1, s0 and s1 are some constants which do not depend ont. We assume thatr1 is nonzero.

The minimum of the Landau expansion for the free energy is found atm= ±
√

−r
2s . Substituting the

expansions forr andswe obtain, for smallt:

m∝ t1/2, henceβ = 1/2

the same as in the mean field approximation.
Another exponent that we can find isδ . This exponent tells us how the magnetisation varies with

h at the critical point for small magnetic field. Usually, we would expect this magnetisation to vary
linearly with h, but here we find a different behaviour, just as in the mean field theory. At the critical
point, r = 0, soF varies withmas

F = −hm+sm4.

We see that
m∝ h1/3,

so thatδ = 3, as in the mean field approach. Also for the other critical exponents, the mean field
values are found.

We see that the critical exponents from the Landau theory andfor the mean field approach are the
same. This is not surprising, as it can be shown that the mean field free energy can be expanded in a
series which is equal to the Landau expansion. Taking the expression found above:

F =
K
2

qNm2−kBTNln{2cosh[(Kqm+h)/kBT]} .



77

and expanding this in terms ofm, we find:

F = q+ rm2+sm4+ . . .

with q = −kB ln2, r = Kq(1−Kq/kBT), u = Kq/3(Kq/kBT)3.
In the Landau theory it is assumed that the free energy is determined by the average value of the

magnetisation. In reality, the fluctuations of the magnetisation must be considered as well. The fact
that these fluctuations were neglected is an approximation similar to the mean field approximation.
This explains why the mean field exponents were recovered in the Landau theory.

10.4 Landau Ginzburg theory and Ginzburg criterion

In order to obtain more insight into the approximations madein formulating the Landau theory, we
now formulate amesoscopicform of this theory. The idea behind this formulation is as follows.
We divide the volume of the system up into cells which are verysmall in comparison to the system
volume, but still large enough to contain many spins (in the case of a gas/liquid, these subvolume must
contain many particles). Then the average spin in such a cellis a continuous variable which we shall
call m(r): r is the location of the cell, andmassumes values between−1 and+1. As we are interested
in phenomena close to the critical point, we are dealing withsmall values ofm(r), and within each
cell, the energy (Hamiltonian) may be described by a Landau expansion as in the previous section.
However, writing up such a Hamiltonian for eachisolatedcell, means that we neglect the couplings
between neighbouring cells. This coupling will depend on the difference between the magnetisation
in these cells; moreover, it will not depend on the sign of that difference, even in the presence of an
external field. Therefore, this contribution can be cast in the form

α
[

m(r ′)−m(r)
]2

+ β
[

m(r ′)−m(r)
]4

+ . . .

wherer andr ′ are the coordinates of neighbouring cells. Keeping only thelowest order term in this
expansion, we have, after replacing the difference by a gradient and integrating over the volume:

H =

∫

{

k[∇m(r)]2 +h(r)m(r)+ rm2(r)+sm4(r)
}

d3r.

This form of the Hamiltonian reproduces the results of the previous section ism(r) does not vary with
r . Note that the magnetic fieldh varies with position. The possibility to varyh andm with position
enables us to evaluate the correlation function, defined as

g(r) = 〈m(r0)m(r0 + r)〉− 〈m(r0)〉2 .

For a homogeneous system, the term on the right hand side doesnot depend onr0.
A full calculation of the free energy starting from this Hamiltonian is difficult because of the

presence of them4 term – the way to proceed is by a diagramatic expansion as donein Wilson’s
renormalisation theory, which is beyond the scope of this course. However, we can assume the critical
behaviour found in the previous section to be valid and use our new Hamiltonian only to evaluate the
correlation function. This is important because the integral over the correlation function is precisely
the term which was neglected in the mean field theory. We therefore obtain a consistency criterion fo
this theory.

The correlation function with the Landau-Ginzburg Hamiltonian is found as follows. We take
a magnetic field which only couples to the spin located atr = 0. This means that we have a term
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hm(r = 0) in the Hamiltonian. Now we evaluate the magnetisation at some pointr (not necessarily at
the origin):

m(r) =

∫

∏r dm(r ′)exp
{

−β
[
∫

H ({m(r ′)})d3r +hm(0)
}]

m(r)
∫

∏r dm(r ′)exp{−β [
∫

H ({m(r ′)})d3r +hm(0)]} .

The correlation function is then given by

βg(r) =
dm(r)

dh
= β [〈m(r)m(0)〉− 〈m(r)〉 〈m(0)〉]

so if we find m(r) as a function ofh, we only have to evaluate its derivative in order to find the
correlation function.

We find〈m(r)〉 by requiring that only the contribution which maximises theBoltzmann should be
counted in evaluating the equilibrium value. This is the solution m(r) which minimises

∫

H ({m(r)})d3r +hm(0).

Varying m(r) by δm(r) we have
∫

{

2rm(r)δm(r)+4sm3δm(r)+2k∇m(r)∇ [δm(r)]+hδm(r)δ (r)
}

d3r = 0.

We apply Green’s theorem to the term with the gradients, and require thatδm(r) vanishes at the
boundary of the system in order to find the equation

−k∇2m(r)+ rm(r)+2sm3(r)+
h
2

δ (r) = 0.

Rememberr is a parameter of the Hamiltonian – it does not denote|r |. For h = 0 we recover the
Landau result

m(r) = m0 = 0 for T > Tc(r > 0) and

m(r) = m0 =

√

−r
2s

for T < Tc(r < 0).

For smallh, we can write
m(r) = m0 +hϕ(r),

and becauseg(r) = dm/dh, we may identifyϕ(r) with g(r).
Substituting this in our differential equation we obtain

∇2g(r)− r
k

g(r) =
1
2k

δ (r) for T > Tc and

∇2g(r)+2
r
k

g(r) =
1
2k

δ (r) for T < Tc.

The solution for these equations is

g(r) =
1

8kπr
e−r/ξ ,

where

ξ =







√

k
r for T > Tc and

√

−k
2r for T < Tc.
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Sincer is proportional toT −Tc (see previous section), we see that the critical exponentν = 1/2.
At the critical point, we must user = 0 in the differential equations forg:

∇2g(r) =
h
k

δ (r)

which is recognised as the electrostatic problem of finding the potential of a point charge. The solution
is well known:

g(r) ∼ 1
|r | ,

which gives an exponentη = 0.
For dimension other than 3, the above result can be generalised to

g(r) ∼ 1
rd−2+η ,

still yielding η = 0.
The required result enables us now to estimate the term whichwas neglected in Landau (or mean

field) approximation: the spatial fluctuation of the magnetisation. The relative importance of this
fluctuation can be estimated as follows:

∫ ξ
a g(r)ddr
∫ ξ

a m2
0ddr

∼
∫ ξ

a
1

|r |d−2 ddr

ξ dm2
0

∼ ξ 2−d

m2
0

.

For T approachingTc from below, we havem0 =
√

−r/s, which leads to

ξ 2−d

m2
0

∼ r−(2−d)/2

r
= r(d−4)/2.

We see that the fluctuations can safely be neglected ford > 4. For smaller dimensions, we can expect
corrections to the classical exponents.

10.5 Exact solutions

Another way for studying phase transitions is by exact solutions. Quite a few spin models on regular
lattices have been solved exactly. Exact solutions are generally quite difficult to obtain, and we shall
refrain from treating them in detail here, but sketch the ideas and apply them to the simple case of the
one-dimensional Ising model. The partition function of this model can be written as

Z = ∑
{si=±1}

exp

(

J
N

∑
i=1

sisi+1 +B
N

∑
i=1

si

)

= ∑
{si=±1}

N

∏
i=1

exp(Jsisi+1 +Bsi) .

We use periodic boundary conditions, so thatsN+1 ≡ s1. Now we define thetransfer matrix as
follows

Tsi ,si+1 = exp

[

Jsisi+1 +
B
2

(si +si+1)

]

= 〈si |T|si+1〉

where we have used Dirac notation in the last expression. We can now rephrase the partition function
as follows

Z = ∑
{si=±1}

〈s1|T|s2〉〈s2|T|s3〉 〈s3| . . . |sN−1〉〈sN−1|T|sN〉 〈sN|T|s1〉
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which, using the fact that∑s|s〉 〈s| is the unit operator, can immediately be written in the form

Z = Tr TN.

It is easy to see thatT is a real, symmetric matrix. Therefore its eigenvalues are real. The largest (in
absolute value) eigenvalue is calledλ1, and the second largest isλ2 etcetera. Then

Z =
N

∑
i=1

λ N
i .

For largeN, the contribution from the largest eigenvalue will dominate the sum, and therefore we have

Z ≈ λ N
1 .

We now can calculate the average value of some spinsi somewhere in the Ising chain. It is easy
to see that this is given by

〈si〉 = ∑
{si=±1}

〈s1|T|s2〉 〈s2|T|s3〉〈s3| . . . |si 〉si 〈 si |T . . . |sN−1〉 〈sN−1|T|sN〉〈sN|T|s1〉 .

Using again the fact that an expression like this is dominated by the eigenvector with the largest
eigenvalue ofT, we obtain

〈si〉 =
〈φ1|si |φ1〉
〈φ1|φ1〉

.

whereφ1 is the – normalised – eigenvector corresponding to the largest eigenvalueλ1 of T.
Slightly more difficult is the evaluation of the correlationfunction

gi j =
〈

sisj
〉

−〈si〉〈sj〉.

We assumej > i and j − i ≪ N. Then

gi j =

〈

s1|T i−1|si
〉

si
〈

si |T j−i|sj
〉

sj
〈

sj |TN− j+1|s1
〉

λ N
1

−
(〈φ1|s|φ1〉

〈φ1|φ1〉

)2

.

If we follow the same argument as we used in the calculation ofthe partition function, we would
replace the transfermatrix by its largest eigenvalue. However, in that case,the second term cancels
against the first and the result is zero. The main contribution to the transfer matrix comes from the
second largest term in of the first part. This the term in whichwe replace the part betweeni and j (the
termT j−i) by thesecond largest eigenvalue of T. This eigenvalue isλ2. Therefore, we are left with

gi j =

(

λ2

λ1

) j−i
[

|〈φ1|s|φ2〉|2− (〈φ1|s|φ1〉)2
]

.

We see thatg decays exponentially with correlation length

ξ = ln
λ1

λ2
.

This correlation length becomes infinite whenλ1 = λ2, i.e. when the largest eigenvalue becomes
degenerate. Above we have indicated that the critical point is characterised by a divergence of the
correlation length, so we identify the critical point with the point where the eigenvalues ofT become
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Figure 10.5: Kadanoff’s droplet picture for the Ising model.

degenerate. Important in this respect is theFrobenius theorem. This theorem tells us that the largest
eigenvalue of a symmetric matrix with all positive elementsis nondegenerate. Therefore, the one-
dimensional Ising model does not have a critical phase transition. In general, a model which has only
a finite number of degrees of freedom in the direction perpendicular to the transfer-matrix direction,
never exhibits critical behaviour.

The situation is different in the two-dimensional Ising model, if this becomes infinitely large. Then
the transfer matrix becomes infinite, and Frobenius theoremno longer applies. The two dimensional
Ising model can be solved exactly using the transfer matrix method (Onsager 1944, Schulz, Mattis and
Lieb, 1964). Baxter (1982) has written a book about exactly solved models in statistical mechanics.

Working out the transfer matrix for the 1D model and its eigenvalues is left as an exercise.

10.6 Renormalisation theory

Close to a critical phase transition, the correlation length diverges. This does not mean that there is no
structure characterised by length scales smaller than the correlation length. Kadanoff has characterised
the critical phase by adroplet model. For the Ising model above the critical temperature, this droplet
picture incorporates large regions (droplets) of one spin direction, which contain smaller droplets
of the opposite spin, and these droplets contain in turn smaller droplets with the first spin direction
etcetera. Thus we have droplets, within droplets, within droplets, . . . , as shown in figure 10.5. The
largest droplets are of a size of the order of the correlationlength. ForT < Tc the picture is similar,
but there we see droplets with spin opposite to the directionof the overall magnetisation, the largest
of which are of a size comparable to the correlation length.

The foregoing description suggests that a critical model isscale invariant, as argued above in
section 11.2 in connection with the divergence of the correlation length and the shape of the correlation
function (power law). The scale invariance of a model at its critical point is the notion which lies at
the basis of the renormalisation theory which is described in this section. We shall discuss the general
ideas behind this theory by considering an Ising model with nearest neighbour couplingJ and next
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Figure 10.6: Example of a coarsening procedure as is performed in a renormalisation transformation

nearest neighbour couplingK (including a factor 1/(kBT)):

H = −kBT

(

J ∑
〈i, j〉

sisj +K ∑
〈〈i, j〉〉

sisj

)

where〈i, j〉 denotes nearest neighbour pairs, whereas〈〈i, j〉〉 are the next-nearest neighbour pairs. We
study the model in theJ,K space.

In a renormalisation transformation we try to formulate themodel on a coarser scale. Specifically,
we want to formulate the partition function in terms of new spins which are defined on a lattice with
a larger length scale, as in figure 10.6. The coarse spins are denoted ast instead ofs. Thet-spins are
located at the centers of a subset of the plaquettes of the lattice. The spinst can assume the values
±1, just as in the ordinary Ising model. These values are determined by the values of the spins at the
corners of the plaquette according to the following rules:

• If s1 +s2 +s3+s4 > 0 thent = 1;

• If s1 +s2 +s3+s4 < 0 thent = −1;

• If s1 + s2 + s3 + s4 = 0 thent = −1 or 1, the actual value is chosen at random with probabilities
1/2 for both values.

Now suppose we fix the values oft on each plaquette. Then we can assign an energy to this
configuration using the following rule:

exp(−βH ′{tk}) = ∑
{si}

e−βH({si})W(tk,s
(k)
1 ,s(k)

2 ,s(k)
3 ,s(k)

4 )

where{tk} is a configuration of plaquette-spinstk, k denotes the plaquettes,s(k)
i denotes the spins

surrounding plaquettek, andW are the probabilities to have a spint given the values of the four
corner spins – these probabilities follow directly from therules given above:

• W(t = 1,s1,s2,s3,s4) = 1 if s1 +s2+s3 +s4 > 0;
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• W(t = −1,s1,s2,s3,s4) = 1 if s1 +s2 +s3 +s4 < 0;

• W(t,s1,s2,s3,s4) = 1/2 for t = ±1 if s1 +s2 +s3+s4 = 0.

For all other configurations, the weight factorsW are zero.
We have now merely defined a new interaction for thetk. Now we show what we can do with this

new interaction. We calculate the partition function for the tk:

∑
{tk}

e−βH′({tk}) = ∑
{tk}

∑
{si}

e−βH({si})W(tk,s
(k)
1 ,s(k)

2 ,s(k)
3 ,s(k)

4 ).

We can now move the sum over the configurations{tk} to the right as the terme−βH({si}) does not
depend on theti:

∑
{tk}

e−βH′({tk}) = ∑
{si}

e−βH({si}) ∑
{tk}

W(tk,s
(k)
1 ,s(k)

2 ,s(k)
3 ,s(k)

4 ).

Now we note that the sum over{tk} of the weightsW for any fixedconfiguration of the four spins

s(k)
1 ,s(k)

2 ,s(k)
3 ,s(k)

4 equals 1 (theW have been designed this way). Thus,

∑
{tk}

e−βH′({tk}) = ∑
{si}

e−βH({si}) = Z.

We see that the new spinstk form a model with a partition function which isexactlythe same as the
original one which was defined in terms of thesi . A problem is that the form ofH ′ might differ from
H. Let us however assume that we can approximateH ′ – up to an additive constant – reasonably well
by a form similar toH, but with different values of the interaction constants. We shall come back
to this point later. This means that in going from thesi to thetk, the coupling constantsJ andK are
mapped onto new ones,J′ andK′. Then we repeat this procedure over and over.

It is important to realise that what we have done is a cleverscale transformation, as the distance
between two neighbouringt-spins is twice that between twosi spins. We say that we have integrated
out all degrees of freedom at length scale of the lattice constanta and are left with a new Hamiltonian
of the same form as the original one, but with a lattice constant 2a, and new values of the coupling
constants. This transformation is therenormalisation transformation .

Now let us consider the renormalisation transformation in theJ,K plane. Under a renormalisation
transformation, a pointJ,K is mapped onto a new pointJ′,K′. How will these points transform? We
consider a few special cases.

• Consider a point whereJ andK are large (low-temperature case). Then only few spinssi might
deviate from the majority value, which we take+1 to be specific. If we calculate thetk, even when
an isolated spinsi = −1 is found at the corner of the plaquette, the plaquette spinswill be +1.
Therefore, thetk aremorelikely to assume the majority value than thesi , hence the new coupling
constantsJ′ andK′ describing thet-spins will belarger thanJ andK respectively. In other words,
in the low temperature, the renormalisation transformation causes the temperature to go down.

Another way to understand this is to imagine that we color the+ spins red and the− spins blue.
In the low temperature phase, most of the lattice is single-colored (either red or blue), with small
spots of minority color. If we look at the lattice from a distance so that we no longer distinguish the
fine detail, the lattice looks either red or blue, and the small deviating color spots have dissapeared.
Therefore it looks like a system atT = 0.
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Figure 10.7: Renormalisation flow.

• At high temperatures, the effective couplingsJ andK are weak. The average spin value is 0 – there
is no net magnetisation. The system will consist of patches of a single color – these patches have
a size larger than the lattice constanta because the spins still feel the ferromagnetic interaction.
If we coarsen however, near the edges of such a patch, the new spins t on the coarser lattice will
assume random values as on the edge there are about as many spins + as there are−. This means
that the edge becomes fuzzier. After a few renormalisation steps, the edges have become broader
and broader and finally these regions where thet spins are randomly+1 or−1 cover the whole
lattice. We see that thet seem to live in a system at higher temperature than the systemof thes
spins, in other words, the small couplingsJ andK transform into even smaller valuesJ′ andK′.

Again, when we look from a distance at a lattice at the latticeconsisting of red and blue patches,
we see in the end a mixture of red and blue, or, in other words, the rescaling has made the patches
smaller, and in the end they have the same size as the (new) lattice constant, so we have a system
at infinite temperature.

Now we can imagine what the flow diagram generated by the renormalisation transformation in
the J,K plane looks like: there is a flow towards the originJ = K = 0 and there is a flow towards
infinity J = K = ∞. We therefore have opposite flows towards twofixed points. Both fixed points
have anattraction basinwhich is the region of points which flow eventually towards the fixed points.
Obviously, the two attraction basins must be separated by a line, calledseparatrix. Points on that
line must flow along that line. By extending the arguments above for describing the flow in theJ,K
plane, we can see that forJ = 0, K > 0, a positive couplingJ will be generated in the renormalisation
transformation, and the reverse is also true: from the pointJ > 0, K = 0 we move to a point where
both are positive. Collecting all this information we have the picture shown in figure 10.7. We see that
there are three fixed points. Two of these (at zero and infinity) are so-calledtrivial fixed points where
the physics of the model is easy to understand and relativelytrivial. Then there is a third fixed point
on the separatrix. The entire separatrix is interpreted as aline consisting of critical points, because it
separates the low- from the high temperature phase.
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So far, we have only discussed the mechanics of the renormalisation transformation but have not
derived any useful result from it. To proceed, we consider the partition function in more detail. The
free energy is related to the partition function by

F = −kBT lnZ.

Therefore, the free energy per spinf = F/N (for N spins) satisfies:

e−βN f(J,K) = Z(J,K).

Now we can writeZ as the partition function of the Ising model either in terms of the ‘original’ spins
si , or in terms of the coarsened spinstk, as shown above:

e−βN f(J,K) = ∑
{tk}

e−H′(J′,K′)−C = e−βN′ f (J′,K′)−C.

The constantC is the difference between the original and the renormalisedHamiltonian. This constant
also depends onJ andK. There is a clear relation betweenN andN′:

N′ = N/2d

as can be seen directly from the renormalisation procedure.To keep the discussion general, we relax
the rescaling constant 2 to assume any value larger than 1, and call it l . The result we can infer for the
free energy per spin is:

f (J,K) = l−d f (J′,K′)+c

wherec = kBTC/N.
We can analyse the transformation of the correlation in a similar fashion. The renormalisation

transformation leaves the physics at length scales beyond the scales over which we have integrated
out the degrees of freedom, essentially invariant, so the correlation length does not change under the
renormalisation transformation. However, if we measure the correlation length in units of the grid
constant, we must realise that the latter scales withl , so

ξ (K′,J′) = ξ (K,J)/l .

Now let us analyse the behaviour of the transformation closeto the (nontrivial) fixed point. Points
on the separatrix flow to that point under the renormalisation transformation, whereas points in a
direction perpendicular to that line flow away from the fixed point. To describe the behaviour near
the fixed point, we linearise the renormalisation transformation. If we call the coordinates of the fixed
point J∗,K∗, we have

(J∗ + ∆J,K∗+ ∆K)
RT−→ (J∗ + ∆J′,K∗+ ∆K′).

To first order in∆J and∆K, ∆J′ and∆K′ can be written as
(

∆J′

∆K′

)

= A

(

∆J
∆K

)

,

whereA is a 2×2 matrix whose elements do not depend on∆J and∆K. If we diagonalise the matrix
A, we find two real eigenvalues,λ and µ . One of these, sayλ , corresponds to the points on the
separatrix and will be smaller than 1. This means that the corresponding eigenvector lies along the



86

sepatrix at the fixed point. The other,µ , will be larger than 1 and the corresponding eigenvector lies
in the outflowing direction.

Now there exists an important theorem by Wegner which says that the eigenvaluesλ andµ must
have the following dependence onl :

λ = ly;

µ = lz.

The corresponding eigenvectors are calledWegner scaling fields. We call these scaling fieldss (cor-
responding toλ ) andt (corresponding toµ). Repeated application of the transformation leads to the
rule:

s(n) = lnys;

t(n) = lnzt.

Sinceλ < 1 andµ > 1, we must havey < 0 andz> 0. The indicesy andzare calledscaling indices.
Note that close to the critical point,J andK can be reparametrised in terms ofs andt. For the

correlation length we therefore have:

ξ (s, t) = lnξ (lnys, lnzt).

Choosing nown such thatlnzt = 1, we have

ξ (s, t) = t−1/zξ (t−y/zs,1).

For t → 0, and using the fact thaty/z< 0 (see above), we have

ξ (s, t) = t−1/zξ (0,1) ≡ A

t1/z
.

From the renormalisation flow plot, we can infer thett must be related to the temperature, as varying
the temperature corresponds to moving on a straight line through the origin. We therefore can identify

t =
T −Tc

Tc
,

and we see that the critical exponentν is given by 1/z.
We have seen that near a fixed point, there is an outward flow, corresponding to a positive scaling

index (eigenvalue> 1) and a negative scaling index (eigenvalue< 1). Scaling fields with positive in-
dices are calledrelevant, those with negative indeces areirrelevant, and those with index 0 are called
marginal. Note that any point on the separatrix moves under the renormalisation transformation even-
tually to the fixed point. Therefore, the behaviour at long length scales of these points is dominated
by the properties of this fixed point.

Other critical exponents follow from a similar analysis of the free energy. To analyse these expo-
nents, it is useful to expand the parameter space to include the magnetic fieldB (including the factor
1/kBT):

f = f (J,K,B).

Therefore, we have three scaling fields, which we denote ass, t andh. Note that the corresponding
scaling field must be relevant, as the magnetic field breaks the symmetry and destroys the critical
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behaviour. If it were irrelevant, there would be points corresponding to nonzero field which would
flow to the fixed point, and therefore these points would be critical, which, as we know, is not the case.
We call v the scaling index, associated withh. The direction corresponding toh is perpendicular to
the plane of the renormalisation flow plot in figure 10.7.

We call the scaling fieldss, t andh. The interpretation of these fields is as follows:

• t corresponds to the temperature,

• h corresponds to the magnetic field,

• scorresponds to a particular combination (e.g. the ratio) ofJ andK.

If we are at a critical point and change either the temperature or the field, we destroy the criticality.
However, a judicious change of bothJ andK keeps the system at the critical point.

We have seen before that the free energy per spin transforms as

f (s, t,h) = l−d f (s′, t ′,h′)+c(s, t,h).

We now neglectc(s, t,h) as this is a regular function, and we are interested in the part of the free
energy which contains singularities, as these determine the critical properties. Aftern renormalisation
transformations, we have

fsing(s, t,h) = l−nd fsing(l
nys, lnzt, lnvh).

Again we takelnzt = 1. Therefore we have

fsing(s, t,h) = td/z f (st−y/z,±1,ht−v/z).

From this expression we can derive the critical exponents interms of the scaling indices. We may first
note that against−y/z will approach 0 (see the discussion concerning the correlation length).

First, we calculate the exponentα for the specific heat per particle. This is found from the free
energy per particle as

Ch =

(

∂ 2 f
∂ t2

)

h=0
.

Restricting attention to the singular part off , we see that

Ch ∝ td/z−2,

so that
α = 2−d/z.

The exponentβ describes the behaviour of the magnetisation when the critical temperature is
approached from below. Recall that the magnetisation is given by

m=

(

∂ f
∂h

)

h=0
.

The contribution to the magnetisation arising from the singular part of the free energy is therefore

m∝ td/zt−v/z,

so the exponentβ is found as
β = (d−v)/z.
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For the susceptibility exponentγ , we find

χ =
dm
dh

=
∂ 2 f
∂h2 ∝ td/zt−2v/z,

and we have
γ = −(d−2v)/z.

Finally, the exponentδ describes how the magnetisation varies with the applied magnetic field. In
order to find this exponent, we choosen such thatlnvh = ±1. Then,

fsing(s, t,h) = |h|d/v f (s|h|−y/v, t|h|−z/v,±1),

so that
m= |h|d/v−1 ,

yielding

δ =
v

d−v
.

A different kind of analysis enables us to find the critical exponent associated with the correlation
function, which, as we anticipated above, decays algebraically with distanceat the critical point. The
decay is defined in terms of a critical exponentη :

g(r) ∼ 1
rd−2+η .

Now we note that the susceptibiltyχ is related to the correlation function by the relation

χ =

∫

g(r)ddr.

This relation is derived as follows.
∫

g(r)ddr ≈ ∑
r
〈s(0)s(r)〉−N〈s(0)〉2 ,

where use has been made of the translation invariance of the system. Given the fact that the magneti-
sation is given as

m=
∑r s(r = 0)exp[H0({s(r)})+h∑r s(r)]

∑r exp[H0({s(r)})+h∑r s(r)]

and usingχ = dm/dh, we see that

χ =
∑r s(r = 0)∑r s(r)exp[H0({s(r)})+h∑r s(r)]

∑r exp[H0({s(r)})+h∑r s(r)]
−N

[

∑r s(r = 0)exp[H0({s(r)})+h∑r s(r)]
∑r exp[H0({s(r)})+h∑r s(r)]

]2

,

where the first term derives from the numerator, and the second from the denominator in the expression
for m. We recognise the right hand side of this equation as

∫

g(r)ddr.
Now the exponentη can be derived by evaluating the contribution from the algebraic component

of g(r) in the integral. In order to do this properly, we must realisethat the algebraic decay sets in
beyond a distance of the order of the lattice constanta, and that, close to the critical point, where the
correlation lengthξ is large but finite, this decay persists up to the distanceξ , but vanishes beyond.
Therefore we have

χ ∝ t(d−2v)/z =
∫ ξ (t)

a

1
rd−2+η rd−1dr,
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where the angular degrees of freedom have been separated outfrom the integral, as the integrand
depends only onr. From this, and from

ξ ∝ t−ν = t−1/z,

we see that
t(d−2v)/z ∝ ξ 2−η ∝ t(η−2)/z,

so that
η = d+2−2v.

10.7 Scaling relations

In the previous section, we have seen that the critical behaviour is governed by the positive scaling
indicesz andv, i.e. the indices corresponding to the relevant scaling fields. There are only two such
fields, but there are six critical exponents. Therefore, theexponents must be related among each other.
Inspecting the expressions for these exponents, we have

• ν = 1/z; α = 2−d/z, so
dν = 2−α .

• α = 2−d/z; β = (d−v)/z; γ = −(d−2ν)/z, so

α +2β + γ = 2.

• β = (d−v)/z; γ = −(d−2ν)/z; δ = v/(d−v) so

β (δ −1) = γ .

• γ = −(d−2ν)/z; ν = 1/z; η = d+2−2v, so

γ = (2−η)ν .

It is clear that the critical exponents of the Ising model (α = 0, β = 1/8, δ = 15, ν = 1, η = 1/4,
γ = 7/4 satisfy these scaling relations ford = 2 whereas the mean-field or Landau exponents (α = 0,
β = 1/2, δ = 3, ν = 1/2, η = 0) satisfy these relations ford = 4.

10.8 Universality

Suppose that we add new interactions or fields to the Hamiltonian. ‘New’ here means that they
cannot be expressed in terms of the interactions and fields already present in the Hamiltonian. These
new terms then have their own parameters, so the total parameter space of the model acquires extra
dimensions. Obviously the effect of the new terms strongly depends on whether they are relevant,
irrelevant or marginal. If the new fields are relevant, then their presence will move the system away
from the critical point under the renormalisation transformation. If the terms are irrelevant they have
absolutely no effecton the critical exponents. If they are marginal, this means that the fixed point lies
on a line of critical points, and on this line, the critical exponents may vary. The important notion here
is that adding irrelevant fields leaves the critical exponents unchanged. All the models which differ
from the original one by irrelevant terms, have the same critical behaviour. The class of models which
is governed by one and the same fixed point is called theuniversility classof the system.
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Figure 10.8: The renormalisation transformation for the triangular lattice in 2 dimensions.

10.9 Examples of renormalisation transformations

As an example of a renormalisation transformation, we consider the Ising model in two dimensions
on a triangular lattice. The reason we choose this lattice isthat the transformation is simpler than for
the square lattice. The transformation is shown in figure 10.8. We take for the interaction only nearest
neighbour couplings into account, and take the magnetic field equal to zero. Two neighbouring coarse
plaquettes are arranged as shown on the right hand side of figure 10.8. The plaquette spins are chosen
according to the majority rule: the plaquette spin is the same as the majority of spin values at the three
corners of the plaquette. If both plaquette spins are positive, then the sum of the Boltzmann weights
corresponding to all possible configurations, given that the two+ values of the plaquette spins is

e−H(+,+) = e8J +3e4J +2e2J +3+6e−2J +e−4J.

H includes the factor 1/kBT = β . The total number of weights on the right hand side adds up to 16,
since both plaquettes have four possible configurations given their majority spin. For opposite spins
we have

e−βH(+,−) = 2e4J +2e2J +4+6e−2J +2e−4J.

Therefore, calling the plaquette spinsti we have a Hamiltonian of the form

Hrenormalised({ti}) = ∑
〈i, j〉

J′tit j ,

whereJ′ obviously includes the factor−β and where the renormalised coupling constantJ′ is given
by the requirement

e2J′ =
e−H(+,+)

e−H(+,−)
,

which leads to the following explicit form ofJ′(J).

J′ =
1
2

ln

[

e8J +3e4J +2e2J +3+6e−2J +e−4J

2e4J +2e2J +4+6e−2J +2e−4J

]

.
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Figure 10.9: Renormalised coupling constantJ′ as a function of the original coupling constantJ of the Ising
model.

In figure 10.9, the renormalised coupling constant is plotted as a function ofJ. There is a fixed
point at the valueJ ≈ 0.365. The exact solution for the Ising model on a triangular lattice gives a
value 0.274.

The slope of the plot of the functionJ′(J) turns out to be 1.544 – this is the value of the eigenvalue
λ . It then follows directly that the scaling indexz = 0.79, to be compared with the exact value of
1.0. It is straightforward to include the magnetic field into this renormalisation procedure. This leads
to a scaling index for the magnetisation of 2.02 (exact value1.8750). All in all these values are
encouraging. Moreover, this procedure can be extended straightforwardly to encompass larger and
larger clusters (Niemeyer and Van Leeuwen) and the values obtained in this way are within less then
a percent of the exact ones.

10.10 Systems with continuous symmetries

Another example of a system for which a renormalisation transformation can be carried out is theXY
model. This model has physical realisations in superfluid helium films and arrays of superconducting
islands separated by Josephson junctions. Moreover, the model can be mapped onto a roughening
model, which describes the roughening of a crystal surface with increasing temperature.

The model is formulated on a 2D lattice; the degrees of freedom have a 2π periodicity: they
can be viewed as the angles of unit vectors which in turn can beconsidered as ‘planar spins’ (see
figure 10.10). The Hamiltonian of the model is given by

H = −K ∑
〈i, j〉

cos(θi −θ j).

This Hamiltonian favours the spins to be aligned (θi = θ j ).
The behaviour at low temperatures of this models is dominated by two types of excitations. The

first type of excitations arespin waves. These are excitations of the form

θ(r) = Aexp(ik · r)
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Figure 10.10: TheXY model with planar spins on a square lattice.

with wavelengths 2π/|k| much larger than the lattice spacinga. In that case we can approximate the
cosine occurring in the Hamiltonian by a quadratic expression:

H ≈−K ∑
〈i, j〉

[

1− 1
2
(θi −θ j)

2
]

.

The first terms in the square brackets add up to a constant which does not influence the model. Keeping
the second term leads to the so-calledGaussian model, as the Boltzmann factor has a Gaussian form.

The Gaussian model can be solved exactly by Fourier transforming the variablesθi . We set

θ̃ (k) =
1
L ∑

i

θ(r i)e
ik·r i

where we assume that we are dealing with anL×L square lattice. Then,

θ(r i) = ∑
k

θ̃(k)e−ik·r i .

Therefore, we obtain

∑
i

[θ(r i)−θ(r i +ax̂)]2 = ∑
i

[

∑
k

θ̃ (k)
(

e−ik·r i −e−ik·(r i+ax̂)
)

]2

.

Using the fact that, sincek assumes the valuesk = 2π
aL(nx,ny), we have

∑
i

eik·r i = Nδk,000,

we obtain

∑
i

[θ(r i)−θ(r i +ax̂)]2 = ∑
k

[2−2cos(akx)]θ̃ (k)θ̃ (−k).
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Including the terms which are neighbours along they direction, and taking|k| small, we have

H = −K
2 ∑

k
k2θ̃(k)θ̃ (−k).

DefiningJ = βK, the partition function can be written as

Z =
∫ ∞

−∞
∏
k

θ̃k exp

[

J
2

k2θ̃ (k)θ̃ (−k)

]

.

This is a product of Gaussian integrals which can be evaluated analytically to yield

Z = ∏
k

π
Jk2 .

For the free energy we then find

F = −kBT lnZ = −kBT
∫

ln
2π
Jk2 d3k.

The integral has a lower bound corresponding to 2π/(La) and an upper bound of 2π/a. We refrain
from working it out but emphasise that this free energy is an analytical function of temperature (which
is hidden in the parameterJ) so there is no phase transition.

Surprisingly, the model is critical for all temperatures! This can be seen by working out the
correlation function

〈cos[θ(r)−θ(0)]〉 =
〈

ei[θ (r)−θ (0)]
〉

(the sin term disappears as a result of antisymmetry). As theaction (Hamiltonian) is quadratic inθk ,
we can evaluate this expectation value.

〈

ei(θr−θ0)
〉

=
〈

e
i
N ∑k(eik·r−1)θk

〉

=

∫

∏k dθkeiµkθk e−
J
2 ∑k k2|θk |2

∫

∏k dθke−
J
2 ∑k k2|θk |2

with µk = eik·r −1.
We see that the expressions in the numerator and denominatorfactorize. For the numerator we can

work out a factor. We writeθk = X + iY andµk = µ1 + iµ2. Furthermore, we realise thatθ(−k) =
θ∗(k) and similar forµk . Finally, we combine the integrals overk and−k into a single integral over
k, which now runs over half the reciprocal space only, to obtain

∫

ei(µkθk+µ−kθ−k e−Jk2θkθ−k dθk =
∫

e2i(µ1X−µ2Y)e−Jk2(X2+Y2)dXdY.

We see that the two integrals factorise. For the integral over X we have

∫

e2iµ1Xe−Jk2X2
dX =

∫

exp

[

−Jk2
(

X− i
µ1

Jk2

)2
]

exp

(

− µ2
1

Jk2

)

.

The Gaussian integral gives precisely the same result as thecorresponding Gaussian integral occurring
in the denominator, so after dividing this factor out, the result is

exp

(

− µ2
1

Jk2

)

.
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For the integral overY, we obtain

exp

[

− µ2
2

Jk2

]

.

multiplying both terms gives

exp

[

−|µk |2
Jk2

]

.

Carrying out the product overk over theentire reciprocal space, and realising that the product of
exponentials can be written as the exponential of the sum, weobtain

g(r) = exp

[

− 1
2J ∑

k

|µk |2
k2

]

= exp

[

− 1
2J ∑

k

2−2cos(k · r)
k2

]

.

Let us call the result of the sumf (r):

f (r) = ∑
k

2−2cos(k · r)
k2 .

Then, in the continuum limit:
(

∂ 2

∂x2 +
∂ 2

∂y2

)

f (r) = ∑
k

2cos(k · r) = 2Nδr ,000.

This is recognised as the Poisson equation for a line charge (or a point charge in two dimensions).
The solution of this equation is

f (r) =
1
π

ln r,

so that we find for the correlation function

g(r) = g(r) ∝ e− ln(r)/(2πJ) =
1

r1/(2πJ)
.

We see that this correlation is critical (power law).
In fact, the Hamiltonian favours spins to be aligned. However, the spin waves can be formed

at such low energy cost that they will destroy any attempt to build up a real ‘long range order’, in
which the expectation value for spins very far apart approaches a constant. This is an example of the
Mermin-Wagner theorem (1966) which states that systems with continuous symmetry cannot exhibit
long range order.

In addition to spin-waves, the XY model can exhibit excitation of a vortex character. First we
study a single vortex as in figure 10.11. The energy of such a vortex can be calculated as follows.
Consider a circle of radiusa around the center of the vortex. The number of spins on that ring will be
of order 2πr/a wherer is the lattice constant. The difference between neighbouring spin angles will
therefore be 2π/(2πr/a) = a/r. The energy stored in the spins around the circle is therefore

E(r) ≈ 2π
r
a

K
2

(a
r

)2
≈ Kπa

r
.

For the total energy, we must integrate this for radii up to the order of the system sizeR, and we obtain

Etotal ∼ πK ln(R/a).
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Figure 10.11: An isolated vortex in theXY model.

The entropy associated with a single vortex is proportionalto the logarithm of the number of ways we
can place the vortex on the lattice:

S∼ kB ln(R/a)2.

The free energy of a single vortex can therefore be estimatedto be

F = E−TS= (πK −2kBT) ln(R/a).

We see that for low temperatures, itcostsfree energy to build up an isolated vortex, whereas for high
temperatures, free energy isgainedwhen a vortex is formed. We therefore expect a sudden, sponta-
neous proliferation of vortices when the temperature exceeds a particular value, which we associate
with a phase transition.

To see what the situation is like in the two-vortex case, we first note that a vortex centered atr0 is
described by a solution of the equation:

∇×∇ [θ(r)] = ±2πδ (r − r0).

It can be rigourously shown that the vortex system behaves asa system of charges in two dimensions.
The vortices have two possible winding directions, corresponding to positive and negative charges. A
vortex pair of opposite sign has a total energy of

Epair = −πJeiej ln
∣

∣r i − r j
∣

∣

whereei ,ej = ±1. Therefore, two vortices have afiniteenergy (as opposed to a single vortex) and the
entropy helps these pairs to proliferate at low temperatures.

The vortex system can be described by a so-calledCoulomb gasin two dimensions: this is a
gas consisting of charges which float on the lattice. The picture we have developed so far of the
behaviour of this model is that at low temperatures, the system will for charge dipoles and therefore
be an insulator. Beyond a transition temperature of the order of Tc = πK/(2kB), the dipoles will ‘melt’
and free charges will occur: the insulator becomes a conductor.
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z

π/2

1/J

Figure 10.12: Renormalisation flow for the Coulomb gas. The transision point lies atJ = 2/π .

Kosterlitz and Thouless have performed a renormalisation procedure to analyse the Coulomb gas
model. The Hamiltonian is

−πJ∑
i, j

eiejV(|r i − r j |)+ µ ∑
i

e2
i .

The second term is added to have the freedom of changing the chemical potential of the charges.
The renormalisation transformation can also be obtained using a self-consistency requirement for the
linearly screened, or effective potential. This potentialis defined as the free energy associated with
two infinitesimal charges placed at0 andr . If the system is an insulator (T < Tc), the potential with
still be logarithmic, but with a prefactor given by the dielectric constant. For high temperatures, when
free charges can exist, the system becoms a conductor and thepotential acquires an exponential form.

Definingz= exp(µ), the renormalisation equations have the form

dJ
dl

= −4π2J2z2;

dz
dl

= (2−πJ)z.

The flow diagram is shown schematically in figure 10.12. Suppose we start at some values forJ and
z. In the low-temperature phase, the renormalisation trajectory brings us to a point with equivalent
critical behaviour. We see that we end up atz= 0, i.e. a phase with very low vortex density and a
renormalised coupling constant̃J. In this phase, the correlation function is simply

g(r) = exp(−π J̃ ln r) = r−πJ̃.

This is therefore a critical phase. Beyond the critical temperature, the behaviour of the system corre-
sponds to that of a system with an infinite concentration of vortices and high temperature. This is a
disordered phase. The transition temperature lies atJ̃ = 2/π, as anticipated above on the basis of a
simple energy-entropy balance argument.
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What consequences does this have for physics? We shall describe the vortex physics of superfluid
helium films. These films are essentially two-dimensional, and they carry a particular density of
(quasi)-particles which are all in the same quantum state, which is characterised as

ψ(r) = a(r)eiγ(r).

As we have seen in chapter 10, we can have vortices associatedwith a rotation of the phase around
a centre where the superfluid densityρ(r) = a2(r) vanishes. On page 63, we have found for the
superfluid velocity:

us =
ℏ

m
∇γ(r).

Outside the vortex centres, the superfluid density is roughly constant, so we can evaluate the kinetic
energy for the superfluid fraction as

H =
mρ
2

∫

u2
s(r)d

2r =
ℏ

2

2m
ρ
∫

[∇γ(r)]2 d2r.

The phasesγ(r) have the same property as the degrees of freedom in theXY model, in the sense
that they are periodic with period 2π. This means that the phase can exhibit vortices. The coupling
constant is

J =
ℏ

2

m
ρ

kBT
.

What is measured in experiment is the renormalised couplingconstant which, as we infer from the
last equation, is in fact the superfluid density. At the phasetransition,J̃ jumps from the value 2/π to
zero. This implies that the measured superfluid density jumps from

ρcrit =
2kBTm

πℏ2

to zero. This has been confirmed experimentally by Bishop andReppy in 1978.
Similar phenomena have been observed for coupled arrays of Josephson junctions (Herre van der

Zant) and for surface roughening transitions.
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Irreversible processes: macroscopic theory

11.1 Introduction

Up to this point, we have been exclusively concerned with equilibrium statistical mechanics. If we
consider a system in equilibrium, and identify a subvolume within this system of size (much) larger
than the correlation length, we find that the thermodynamic properties within this system are equiva-
lent to that of the entire system. However, if we are not yet inequilibrium, this may no longer hold,
and neighbouring subsystems will have different thermodynamic properties. The systems will how-
ever tend to equalise these properties, by exchange of energy, momentum, or other quantities. This
exchange can be formulated in terms offluxesof the quantity under consideration.

Now consider such subcells inside some larger system. We focus on a particular quantityAi within
subcella. Note that a necessary condition for definingAi is that the subcell must be much larger than
the microscopic length scale (atomic correlation length) and much smaller than the distance over
which thermodynamic quantities vary – we then are in thehydrodynamic limit. If Ai is a conserved
quantity (for example particle number, energy) then a change of Ai(a) may take place through two
mechanisms: (i) a loss or increase due toAi flowing to or from neighbouring cellsb; (ii) a loss or
increase due to some source or sink for the quantityAi inside the cell. For example, particles may
move from one cell to another [process (i)] or the cell may be connected to a source or drain of
particles [process (ii)].

The conservation law for quantityAi can be formulated as

dAi(t)
dt

= − ∑
b6=a

Φi(a→ b)+ Φi(sources→ a).

The quantitiesΦi representfluxes: their dimension is the dimension ofAi per unit of time.
Now suppose thatAi can be defined in terms of adensityρi:

Ai(a, t) =

∫

V(a)
ρi(t) d3r (11.1)

for any cella much larger than the correlation length. Then we may also define a local flux j i and
sourec termσ such that the conservation law above may be formulated, using the divergence theorem,
in terms ofρi, j i andσi:

∂ρi

∂ t
+ ∇ · j i = σi.

11.2 Local equation of state

When we want to consider the flow of a quantityAi in the sense of the previous section, we must
take thisAi to be extensive, as can be seen by expression (11.1). We have seen in the beginning of

98
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this course, that with each extensive variable, there is a conjugate, intensive variable. As an example
we may consider the energy, which is the quantity which flows from one cell to the other, and its
conjugate variable temperature, which will change in the two cells as a result of energy transport, but
which is not subject to a conservation law as in the previous section.

As the distinction between extensive quantities and their intensive, conjugate partners is quite ex-
plicit in the study of nonequilibrium and transport, it is convenient to take the entropy as the statistical
potential: this potential is defined in terms ofextensivequantities and the corresponding intensive
quantities can be determined as derivatives of the entropy:

∂S
∂E

=
1
T

;
∂S
∂N

= −µ
T

;
∂S
∂V

=
P
T

.

The last relation is irrelevant for our purposes as we do not consider the volume as a flowing quantity.
What may flow, however, is the momentum of the particles in oursubvolume, so we must consider the
entropy for fixed volume, particle number, energyand total momentump. Note thatp is an extensive
quantity. It can be shown that the entropy does not change when we impart an equal velocity to all
particles in our system. The energy measured with respect tothe system box, will however change by
an amountp2/2m. Therefore we have:

S(E,p) = S(E− p2/(2m),000).

We find the derivative with respect to the momentum componentpi as follows:

∂S(E,p)

∂ pi
= −∂S(E,000)

∂E
pi

m
= −ui

T
,

whereui is the mean velocity.
In more general terms, we call the conjugate variable of an extensive variableAi, γi :

γi =
∂S
∂Ai

.

As S is extensive, as are the extensive quantitiesAi, we have

S(λAi) = λS(Ai).

Taking the derivative with respect toλ and then settingλ ≡ 1, we have

S= ∑
i

Ai
∂S
∂Ai

= ∑
i

γiAi.

For the local quantities, this is

∑
i

∫

V
ρi(r , t)γi(r , t) d3r = S.

From this, we see that

γi(r , t) =
δS

δρi(r , t)
.

Summarizing, we see that there exist pairs of conjugate variables, one of which is intensive, and
the other extensive. Intensive partners of extensive variables are found by taking the derivative of
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the entropySwith respect to the extensive variable. The variation of theintensive variable drives the
transport of the extensive variable. An obvious example is temperature difference which drives the
transport of energy.

We are usually interested in small deviations from equilibrium, and in that case we may postulate
a linear relation between the driving force, oraffinity, which is the difference of the intensive variable
in neighbouring cells and the currentΦi(a→ b):

Φi(a→ b) = ∑
j

Li j [γ j(b)− γ j(a)] .

This can be cast into a local form by taking the volumesa and b very small and dividing by the
volume: then the currentj iα(r , t) can be related to the gradient of the affinityγi along the cartesian
directionα :

j iα(r , t)− j i,eq
α (r , t) = ∑

j,β
Lαβ

i j (a,b)∂β γ j(r , t).

In this chapter, we shall always useα ,β for cartesion directions.

11.3 Heat and particle diffusion

We can apply the general analysis of the previous sections tothe particular examples of particle and
heat diffusion. As already mentioned, the heat diffusion isdriven by the gradient of the temperature.
We assume that energy is the only flowing quantity – this type of transport is called thermal conduc-
tion. Note that we do not include particle transport. The heat current can be directly derived using the
results of the last section:

jα ,E(r , t) = ∑
αβ

Lαβ
EE∂β

(

1
T

)

.

In an isotropic medium the relation between temperature andheat current is given by the familiar
relation

jE(r , t) = −κ∇(T) ,

whereκ is thethermal conductivity. We see that in this case the tensorLαβ
EE is diagonal:

Lαβ
EE = κT2δαβ .

The conservation law leads to an interesting result. The energy density is calledε , and together
with the expression for the current just derived, it enters in the conservation equation to give

∂ε
∂ t

+ κT2∇ ·∇
(

1
T

)

= 0.

We need a so-called constitutive equation to relateε to the temperature. This is

ε = cT,

wherec is the specific heat (per unit volume), which we assume to be independent of temperature. We
then obtain

c
∂T(r , t)

∂ t
−κ∇2 [T(r , t)] = 0.
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This is the famousheat, or diffusion equation. The solution with intial conditionT(r , t = 0) = δ 3(r)
is given as

T(r , t) =
1

(4πDt)3/2
exp
[

−r2/(4Dt)
]

,

with D = κ/c. This solution shows that sharp features (delta functions)decay to smooth shapes in the
course of time.

For particle diffusion in a system with uniform temperature(i.e. no energy transport), we can
focus on the particle transport. This is driven byµ/T according to the previous section. The current
is related to the gradient of this driving force by the linearresponse relation:

jα ,N(r , t) = −∑
β

Lαβ
NN∂β

(

µ(r , t)
T

)

.

Just as in the previous section, we may compare this with the familiar expression

jN(r , t) = −D∇n,

known asFick’s law. This comparison necessitates an additional step, which involves another relation
betweenµ andn. This relation is

(

∂ µ
∂n

)

T
=

1
κTn2 ,

whereκT is the isothermal compressibility. In fact, this compressibility indicates how difficult it is to
compress a material, and its definition is

κT = − 1
V

(

∂V
∂P

)

.

From the Gibbs-Duhem relation
Ndµ +SdT−VdP= 0,

it is seen that
(

∂P
∂ µ

)

T
= n,

so that we obtain

1
κT

= −V
N

(

∂P
∂ (V/N)

)

T
= n

(

∂P
∂n

)

T
= n

(

∂P
∂ µ

)

T

(

∂ µ
∂n

)

T
= n2

(

∂ µ
∂n

)

T
,

which proves the relation used above.
All in all, we obtain for the current

jN(r , t) = −LNN

T
1

κTn2 ∇n(r , t).

Hence we find

D =
∂ µ

∂nLNN
=

LNN

n2κTT
.

The particle conservation equation then leads to a diffusion equation similar to that for the heat trans-
port obtained above.
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11.4 General analysis of linear transport

Suppose we have a homogeneous, isotropic fluid at rest and in equilibrium. Obviously, the enetropy
is maximal, as we are in equilibrium. Now we imagine a box thatwe move at uniform velocity along
the fluid. Obviously, our imaginary box does not change the physics of the problem, and within the
box the fluid is still in equilibrium. However, the fluid now moves, hence energy and momentum are
transported through the walls of our imaginary box. Also, entropy will move in- and outside. We
know however that the net flux, which gives us the change of energy, momentum, entropy and so on,
vanishes. All these currents are therefore reversible, non-dissipative currents.

Now imagine another process in which we place many particlesat the centre of a box. The
particles will diffuse from the centre to fill the box homogeneously (if we are in the gas phase). If
we now imagine again a box in the system, for example a box surrounding the centre, we have again
currents of energy, momentum, entropy, etcetera, but thesecurrents will no longer be reversible. In
particular, we know that the entropy is not conserved, and that it will increase in the entire box.
Therefore, if we divide the system in two parts, there will bean exchangeof entropy, but as an
exchange does not change the total entropy, in addition in each box there will be an increase or
decrease which is not cancelled by an opposite change in the other box. We have distinguished
reversible and non-reversible currents. The latter are associated with an increase of entropy, and
therefore with heat generation. The problem of non-reversible, or dissipative, currents is of particular
interest from now on.

We shall now analyse the transport problem in a general way. Fluctuations of a system from the
equilibrium state can be related to the transport properties of that system. The analysis proceeds as
follows. Suppose we have an isolated system, which tends to maximise its entropy. The entropy
depends on extensive quantitiesAi. We callÃi the values for which the entropy assumes its maximum.

Fluctuations correspond to deviations of theAi from their equilibrium values. The corresponding
variation in the entropy can be expanded in a Taylor series:

S(A1, . . . ,AN) = S(Ã1, Ã2, . . . , ÃN)+
1
2∑

i, j

∂ 2S(Ã1, Ã2, . . . , ÃN)

∂Ai∂A j
(Ai − Ãi)(A j − Ã j)+ . . . .

From now on, we shall confine ourselves to the case where the system is close enough to equilibrium
to justify dropping the higher order terms in the expansion.The fact that the first-order term is not
included is due to the fact thatSwas expanded around itsmaximum– hence, the first derivatives are
all zero. The fact that the entropy strives to its maximum is the driving force which causes fluctuations
to dampen out.

Recalling that
S= kB lnΩ,

whereΩ is the number of states accessible to the system, and combining this with the fundamental
postulate if statistical mechanics, which says that each ofthese states is equally probable, we have
for the probability of having a state where the quantitiesai = Ai − Ãi are nonzero, the following
expression:

P(a1, . . . ,aN) =
exp
(

−∑i j
γi j

2 aia j
)

∫ ∞
−∞ da1 · · ·daN exp

(

−∑i j
γi j

2 aia j
) ,

where

γi j = − 1
kB

∑
i, j

∂ 2S(Ã1, Ã2, . . . , ÃN)

∂Ai∂A j
.
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Note that the fact thatShas a maximum implies that the matrixγi j has positive eigenvalues.
From this we can derive a simple expression for correlation functions of theai . Note that

1
P

∂P
∂ai

=
1
kB

∂S
∂ai

.

Taking the average on the left and right hand side with respect to the distributionP we obtain
〈

ai
∂S
∂ai

〉

=

∫

da1 · · ·daN ai
∂S
∂ai

P = kB

∫

da1 · · ·daN ai
∂P
∂ai

Integrating by parts the integral on the right hand side leads to
〈

ai
∂S
∂ai

〉

= −kB.

Moreover, fori 6= j we find along the same lines:
〈

ai
∂S
∂a j

〉

= 0.

You may object that the first derivative ofS with respect to theai is zero. This is true at the
maximum, but near that maximum, we find

∂S
∂ai

= ∑
j

γi j a j .

Using this we rewrite the result above as

∑
k

γik
〈

aka j
〉

= kBδi j .

The entropy changes in the course of time as

dS
dt

= ∑
i

ȧi
∂S
∂ai

= ∑
i

ȧiγi ,

where we have used the definition of the affinityγi (see above). We know that the entropy strives
towards becoming maximal, and the way to reach this maximum is by changing the values of theai .
This change only stops when∂S/∂ai = γi is zero. In a linear response Ansatz, we have the following
relation between theγi and the time-derivative ofai :

ȧi = ∑
j

Li j γ j .

This equation relates the rate of change ofai to the affinitiesγ j . The rate of change ofai is often called
acurrent, and the affinities are calledgeneralised forces. Now it is however time to object: above, we
used a different picture, in which a current was really associated with theflowof a quantity, and hence
had a direction, and this flow was related to thespatial variationof the affinity [in electrical terms:
with theelectric field= spatial variation of the potential (=affinity)]. How can wetranslate the above
analysis to the problem of currents?
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The key is to not consider the flowing quantitiesAi themselves as variables, but their firstmoments:

mi =

∫

V
ρi(r , t)r d3r.

Now suppose that this moment changes in time. If itsα component increases, the slope ofA in the
increasing directionrα , increases. This can only happen when there is a net current.Hence we see
that j i ∝ ṁi . Therefore, the present analysis directly carries over to currents and their driving forces.

Now we consider the expectation value

〈

ai(t + τ)a j(t)
〉

=
〈

ai(t)a j(t)
〉

+ τ
〈

ȧi(t)a j (t)
〉

=
〈

ai(t)a j(t)
〉

+ τ ∑
m

Lim

〈

∂S
∂am

a j(t)

〉

=
〈

ai(t)a j(t)
〉

− τLi j kB.

We see that the linear transport coefficientsLi j are found as the time correlation functions of the
fluctuations:

Li j =
−1
kBτ

[〈

ai(t + τ)a j(t)
〉

−
〈

ai(t)a j(t)
〉]

.

From this, using time-reversibility of the correlation function,

〈

ai(t + τ)a j(t)
〉

=
〈

ai(t − τ)a j(t)
〉

we see that the transport coefficients must be symmetric:

Li j = L ji .

This nontrivial property follows from what is calledmicroscopic reversibilityas it reflects symmetry
properties of microscopic correlation functions which follow from the underlying time reversal sym-
metry of the microscopic dynamics. This relation is used a lot by chemists to construct phenomeno-
logical systems of equations which describe exchange of thermal energy, particle species, momentum
etcetera. Onsager received the Nobel prize for this formulation of non-equilibrium transport.

We can analyse further the relation betweenLi j and the correlator. Suppose we had in the above
derivation not multipliedai(t + τ) with a j(t) but witha j(0). In that case, we arrive at the result:

Li j =
−1
kBτ

[〈

ai(t + τ)a j(0)
〉

−
〈

ai(t)a j (0)
〉]

=
−1
kBτ

[〈

ai(t)a j(−τ)
〉

−
〈

ai(t)a j (0)
〉]

where we have used time translation symmetry.
Now we approximate finite differences by time derivatives:

Li j ≈
1
kB

〈

ai(t)ȧ j (0)
〉

=
1
kB

∫ t

0

〈

ȧi(t
′)ȧ j(0)

〉

dt′.

If we taket much larger than the correlation time, we see that

Li j ≈
1
kB

∫ ∞

0

〈

ȧi(t
′)ȧ j(0)

〉

dt′.
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11.5 Coupling of different currents

In section 11.3, we have studied linear transport of a singlequantity: either the energy or the particle
density. In this section we study the simultaneous occurence of such currents, which according to
the general theory may be coupled, under the restriction that the coupling constants are symmetric
according to microscopic reversibility. Then we analyse the relation between drift and diffusion within
the context of the general formulation.

As a first example, we consider flow of energy and current at thesame time. Suppose we have
a system consisting offixed scattering centres, and light particles scattering off these centres. The
scattering is considered to be elastic, so the energy of the light particles does not change. However,
the total momentum of the light particles changes at the collisions and is absorbed by the scatterers,
which are not included in the currents under study. Examplesof such systems are the scattering of
electrons off impurities in a solid, or of neutrons off heavyatoms.

The formalism enables us to directly formulate the currentsusing the transport coefficients:

jE = LEE∇
(

1
T

)

+LEN∇
(−µ

T

)

;

jN = LNN∇
(−µ

T

)

+LNE∇
(

1
T

)

.

Microscopic reversibility (the ‘Onsager relation’) tellsus thatLNE = LEN. Thermal conductivity is
the process which takes place when there is no particle current. This implies that

LNN∇
(−µ

T

)

+LEN∇
(

1
T

)

= 0.

Substituting this into the equation for the energy current,we obtain

jE(r , t) =
−1

T2LNN

(

LEELNN−L2
NE

)

∇T.

We see that, even when there is no net flow of particles, the fact they are allowed to move alters the
thermal conductivity

κT =
1

T2LNN

(

LEELNN−L2
NE

)

with respect to that found in section 11.3.

We now turn to a problem in which there is only a single current, which now is driven by the
chemical potential and by en electric field. The flowing quantity is the charge, and the current is the
familiar electric current. If an electric potential can be considered to be more or less constant over
the subvolume, the energy levels will be shifted by that potential. For the particles, this effect is
indistinguishable from an shift of the chemical potential which in the grand canonical ensemble is a
kind of ‘zero point’ energy which is assigned to every particle. From this we infer that

µ = −T
∂s
∂n

= µ0 +eΦ,

wheree is the charge of the particles,n is the number densityN/V ands is the entropy densityS/V .
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The current which we calculated in section 11.3 can directlyseen to be modified:

jel(r , t) = − e
T

LNN∇µ0(r , t)−
e2LNN

T
∇Φ(r , t) = −e

LNN

T
∂ µ0(r , t)

∂n
∇n(r , t)+

e2LNN

T
E

whereE is the electric field. We see that the current is composed of a diffusive part, equal to that
found in section 11.3, and adrift part which is caused by the electric field.

In a stationary system, the density will be uniform, and the first term vanishes. This then leads to
Ohm’s law:

jel(r , t) =
e2LNN

T
E = σelE.

We see that conductivityσel = e2LNN/T. In section 11.3, we have seen that

D =
∂ µ
∂n

LNN,

so that we have

D =
∂ µ
∂n

Tσel/e2.

For an ideal gas, we have
∂ µ
∂n

=
kBT

n
,

which leads to

D = kBTσel
1

ne2 .

This is an example of anEinstein relationwhich between the diffusion constantD and a transport
coefficientσ . Note that this is a striking result: the way in which particles can diffuse through a
medium determines their behaviour under a driving force completely. This can even be put on a more
general level: the transport coefficient is related to dissipation (the current generates heat through the
resistivity of the material), whereas the diffusion tells us how much the particle positions fluctuate in
equilibrium. There exists theorems which establish general relations between equilibrium fluctuations
on one hand, and transport phenomena on the other – they go under the name offluctuation dissipation
theorems.

11.6 Derivation of hydrodynamic equations

In this section, we derive hydrodynamic equations. These equations describe the flow of a fluid. We
confine ourselves to the simplest case of isotropic fluids, consisting of structureless particles (i.e. no
electric or magnetic dipoles or charges). The archetypicalmaterial is liquid argon. During the flow,
the particles will collide and exchange energy and momentum. We have, however, at these collisions,
conservation of momentum and energy (in addition to the trivial particle conservation: the particles
do not undergo chemical reactions).

Mass conservation is expressed by the relation

∂ρ(r , t)
∂ t

+ ∇ · j(r , t) = 0.

whereρ is the mass density. The current represents the average motion of the particles. We call the
average velocity in a small subvolumeu, which is an intrinsic quantity. In terms ofu, the mass flow
is j = ρu, so we have

∂ρ(r , t)
∂ t

+ ∇ [ρ(r , t)u(r , t)] = 0.
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Working out the gradient, we see that

∂ρ
∂ t

+ ρ∇ ·u+(u ·∇)ρ = 0.

Now we consider the momentum flow. The momentum density isρu. The conservation of the
α-component of the momentum is expressed by

∂ρuα
∂ t

+∑
β

∂βPαβ = 0.

Here,P is a tensor containing the viscous forces which change the momentum.
Writing out the first term and using the mass conservation law, we obtain

ρ
∂uα

∂ t
−uα [ρ∇ ·u+(u ·∇)ρ ]+∑

β
∂βPαβ = 0.

After some manipulation, the second and third term of this equation can be rewritten to arrive at

ρ
∂uα
∂ t

+ ρ ∑
β

(uβ ∂β )uα −∑
β

∂β (ρuαuβ )+∑
β

∂β Pαβ = 0.

The quantityρuαuβ is the flow along the Cartesian directionβ of theα-component of the momentum.
Now consider a small volumeV within the fluid. The flow of momentum across the boundaries of

this small volume determines the rate of change of the momentum inside this volume. But the rate of
change of the total momentum is the net force acting on the volume. Therefore we have

∫

S
ρuα ∑

β
uβ daβ =

∫

V
∂β
(

ρuαuβ
)

d3r = F,

whereS is the surface boundingV; da is a outward normal vector to the surface and we have used the
divergence theorem to get the second experession. We see that the term occurring in our momentum
conservation equation is simply the force. The effect of momentum flow across the boundary is called
thepressure. Therefore,ρuαuβ is called the pressure tensor, which, in equilibrium, has the form

ρuαuβ = Pδαβ

whereP is the scalar pressure for the isotropic fluid.
Now we are left with the viscous tensorPαβ . Based on the general theory, this must be driven by

the affinity of the particle number, momentum and energy, that is, by µ , T anduα . We first make the
assumption that our fluid isisothermal, i.e. the temperature does not vary in space. Furthermore we
assume that the main contribution to the momentum is due to its own affinity, that is, touα . Finally,
we should constructPαβ such that it be isotropic and symmetric inα andβ . This leads to the two
possibilities

δαβ (∇ ·u) and∂αuβ + ∂β uα .

Both have their own transport coefficient, which are calledviscosities.
Usually, the first of these is replaced by the linear combination

1
2

(

∂αuβ + ∂β uα
)

− 1
3

δαβ (∇ ·u).
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Now we can write down the conservation equations for the momentum:

∂u
∂ t

+(u ·∇)u+
1
ρ

∇P =
η
ρ

∇2u+
1
ρ

(η
3

+ ζ
)

∇(∇ ·u) .

This is the Navier-Stokes equation for the momentum flow. In good approximation, we can putP
equal toρkBT so that this turns into a closed equation.

The flow of entropy and energy can be expressed in a separate equation, using a similar analysis.
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Fluctuations and transport phenomena

Up to this moment, we have restricted ourselves to equilibrium phenomena. In this chapter we shall
concentrate on fluctuations from the equilibrium phase and on transport phenomena. The latter are
intrinsically outside of the domain of equilibrium phenomena: transport does – on average – not occur
in equilibrium.

12.1 Motion of particles

Particles move under the influence of their counterparts. The motion of a particle can be split into
three contributions:

• A motion caused by an external force acting on the particles.This is called thedrift.

• A motion on top of the drift, and which is the result of thermalfluctuations. This motion occurs
also in equilibrium.

• A drag induced by the interaction of a particular particle with the other particles.

The main message of this chapter is that these three types of motion are strongly related. Therefore,
from studying the fluctuations in an equilibrium system, we can deduce the transport properties, which
are clearly the non-equilibrium properties of the system.

If a system is moved out of equilibrium, it will take some timebefore equilibrium is restored.
Initially, a local equilibrium will be realised. This means for example that if we stir a liquid, in a
small subvolume of the liquid, the particles will be distributed according to the distribution:

P(v) = exp
[

−m(v−u)2/(2kBT))
]

,

whereu is the average velocity (also called thewind velocity) of the subvolume. Two neighbouring
subvolumes will have different average velocities, but if we wait long enough, these velocities become
equal.

We now focus on dilute systems, i.e. systems in which the particles move freely most of the time
and experience collisions with their counterparts every now and then. In this context it is useful to
speak of themean free path, l , and of thefree flight time, τ , which are related according to

l = 〈|v|〉τ ,

where〈|v|〉 is the average absolute velocity. The meaning of these quantities is related to what happens
between two collision events: the average time between two collisions is the free flight time, and the
average distance a particle travels during that time is the mean free path.
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σ

Figure 12.1: The volume a particle ‘sees’ when travelling through the system.

The free flight time can be calculated if we know the scattering cross section of the particles in the
system, their density, and their average velocity.

A particle ‘sees’ other particles within a tube of cross section equal to the scattering cross section
σscatand of length〈|v|〉 t. The average number of encounters is then given by the volumeof this tube
times the particle density – see figure 12.1. From this we infer directly that

τ =
t
N

=
t

〈|vrel|〉 tσscatn
=

1
〈|vrel|〉σscatn

.

In this formula,〈|vrel|〉 is not the average velocity, but the averagerelativevelocity between the par-
ticles, and we should correct for this. If we carry out the average for relative velocities, based on a
Maxwell velocity distribution, we find

〈|vrel|〉 =
√

2〈|v|〉

and we have

τ =
1√

2〈|v|〉σscatn
.

12.1.1 Diffusion

In agreement with what has been said in the previous section,we can distinguish two mechnisms
for transport of particles through a gas or liquid: diffusion, which is caused by thermal fluctuations
kicking the particles in arbitrary directions, anddrift caused by an external force. First we focus on
diffusion.

We shall derive the diffusion equation for one dimension. A particle is placed on thex-axis and
performs a step in some random direction at regular time intervals. We want to evaluate the probability
ρ(x, t)dxof finding the particle at timet in the intervaldx located atx. To that end, we set up a Master
equation similar to that introduced in connection with the Monte Carlo method. We take the step size
equal toa and the time step equal toh. The probability that at each time step a jump to the left or
right is made, is calledα , and the particle will remain at its position with probability 1− 2α . The
probability density satisfies the following equation:

ρ(x, t +h)−ρ(x, t) = α [ρ(x+a, t)+ ρ(x−a, t)−2ρ(x, t)] ≈ αa2∂ 2ρ(x, t)
∂x2 ,
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where we have taken the small-a limit in the last expression. Taking alsoh small, we may approximate
the left hand side by the time derivative in order to obtain:

∂ρ(x, t)
∂ t

= D
∂ 2ρ(x, t)

∂x2

whereD is thediffusion constant, which can be seen to take on the value

D = α
a2

h
.

By interpretinga as the mean free path andh as the free flight time, and takingα = 1, which seems
to be the natural choice for this case, we have

D =
l2

τ
.

We can also calculate theflux, which is the net number of particles moving from one position to
its neighbouring position. The flow to the right is given by

αaρ(x, t)

and that to the left by
αaρ(x+a, t).

The factorsa in front of theρ ’s in these equation come from the fact thatρ is in fact defined as the
number of particlesper unit length. Keeping the same convention in the derivation of the diffusion
equation does not alter the result, as an extra factora would have to be included in both the left- and
right hand side.

Therefore, we find for the flux:

J = αa
ρ(x, t)−ρ(x+a, t)

h
≈−α

a2

h
∂ρ
∂x

= −D
∂ρ
∂x

,

which can be generalised in 3D to
J = −D∇ρ(r , t).

This relation is known asFick’s law of diffusion. If the diffusion constant depends on position, the
diffusion equation reads

∂ρ(r , t)
∂ t

+ ∇(D(r)∇)ρ(r , t) = 0.

The solution to the diffusion equation with initial condition that thereis a particle at the origin at
t = 0, is

ρ(x, t) =
1√

4πDt
e−x2/(4Dt).

The shape of this distribution is Gaussian at all times, witha width which grows proportional to
√

t.
For t = 0 this reduces to a delta-function. It is obvious that the width should increase in time as the
position of the particle should become more and more uncertain in the course of time. In 3D, we have

ρ(r , t) =
1

(4πDt)3/2
e−r2/(4Dt).

We can calculate the average square displacement of a particle in one dimension (the average
displacement is obviously zero because of symmetry):

〈

(∆x)2
〉

= 2Dt,

in 3D this becomes 6Dt.
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12.1.2 Thermal conductivity

In order to study the transport of thermal energy, we consider a system like in the previous subsection,
but with a temperature gradient in thez-axis, which is realised by putting the system in between two
planes perpendicular to thez-axis, which are kept at different temperatures,T1 andT2.

Now let us consider a plane at heightz. Particles will cross this plane, coming either from above
or from below the plane. The average height at which these particles last collided was

h = ℓ
vz

v
,

After this last collision, the particles have an energy which is the average energy for the heightz−
ℓvz/v. The flux of energy through the plane at heightz is therefore given by

jE =

∫

n(v)vzε
(

z− ℓ
vz

v

)

d3v.

whereε(z) is the average energy of a particle at heightz. Performing a Taylor expansion forε around
zgives

jE =

∫

n(v)vz

[

ε(z)− ℓ
vz

v
dε(z)

dz

]

d3v.

Now we may substitute the Maxwell distribution forn(v) to obtain, after some manipulation:

jE = −1
3

n〈v〉ℓdε(z)
dz

.

Now we writeε = cT wherec is the specific heat per molecule. Then we find for the energy flux

jE = −1
3

n〈v〉ℓcdT(z)
dz

.

and therefore, the thermal conductivity is given by

κT =
ncl〈v〉

3
.

12.1.3 Viscosity

Now we consider the transport of momentum tangential to a plane across that plane. To fix the ideas,
imagine a constantzplane. We want to study the transport of momentumpx across that plane. This is
given by

Pxz =

∫

pxvzn(v)d3v.

Similar to the previous section, we note that the average momentum of the particles moving across, is

px = mux

(

z− ℓ
vz

v

)

.

Inserting this into the above expression forPxz, we obtain

Pxz =

∫

m

(

ux(z)−
vz

v
dux(z)

dz

)

n(v)vzd
3v,

which directly leads to

Pxz = −1
3

nm〈v〉ℓdux(z)
dz

.

Therefore, we find for the viscosity

η =
1
3

nm〈v〉ℓ.
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12.2 The Boltzmann equation

We now turn to a central topic in nonequilibrium statisticalmechanics: theBoltzmann equation. This
is a more formal and consistent formulation of the ideas treated in the previous section. The Boltz-
mann equation describes the motion of a collection of particles in a hydrodynamic cell: that is, a cell
which contains many molecules but which is much smaller thanthe scale over which hydrodynamic
quantities vary appreciably. The central quantity is the number of particles in such a cell of sized3r
and velocity within the volumed3v in velocity-space. This quantity is called thedistribution function
f (r ,v, t):

f (r ,v, t)d3r d3v = number of particles withind3r and velocity withind3v.

If we consider the dilute limit as in the previous section, weconsider the particles as moving freely for
some average timeτ and then colliding with each other. First we consider the question how f changes
with time if we disregard the collisions.

There are two issues which we have to consider: first the particles move in space due to the fact
that they have a velocity and they change their velocity as a result of some (external) force which acts
on them. Do not confuse this force with the interactions between the particles: we save those for the
collisions which are not taken into account til further notice. The change of position and speed has
a direct effect onf . However, the volume elementsd3r andd3v may also change in time. However,
as the particles move independently of each other, each particle is subject to a Hamiltonian evolution
which, by Liouville’s theorem, keeps the volume elementd3r d3v constant.

Therefore we have

f (r(t + ∆t),v(t + ∆t), t + ∆t) = f (r +v∆t,v(t)+
F
m

∆t, t + ∆t) =

f (r ,v, t)+v ·∇r f (r ,v, t)+
F
m
·∇v f (r ,v, t)+

∂
∂ t

f (r ,v, t).

If we are in equilibrium,f only depends onr andv, and not explicitly on time. In that case we have

v ·∇r f (r ,v, t)+
F
m
·∇v f (r ,v, t) = 0,

which, usingF = ∇rV(r) allows for a solution

f (r ,v) = exp

{

−β
[

mv2

2
+V(r)

]}

,

which does not look too unfamiliar.
The interactions between the particles must also be taken into account. This is done in the dilute

limit, in which the particles collide every now and then. Thecollisions will result in a loss and an
increase of the distribution functionf (r ,v, t): a collision atr may have a particle with velocityv as
an end product, or a collision may change the velocityv to some other velocity.

For the frequency of occurrence of a collision we have derived

τ =
1

n|v|σ ,

whereσ is the total collision cross section. Now we need a more refined expression, which includes
the in- and outgoing velocity. This means that we must replace the total collision section by the dif-
ferential one, which depends on the difference between the in- and outgoing angle. More specifically,
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if we travel along with one of the incoming particles, this particles is a target at rest and we see the
other particle hitting it.Ω = (ϑ ,ϕ) are the polar angles of the difference between in- and outgoing
velocity of the incoming particle.

More generally, we introduce a transition amplitude

P(v1,v2,v′1,v
′
2)

which gives us the probability density thatgiventwo particles which collide with incoming velocities
v1 andv2, the result is outgoing particles with velocitiesv′1 andv′2. This probability density must
satisfy several requirements:

• Time reversal symmetry:

P(v1,v2;v′1,v
′
2) = P(−v′1,−v′2,−v1,−v2).

As the probability distribution is in general symmetric under reversal of all velocities (space in-
version symmetry), we also may write

P(v1,v2,v′1,v
′
2) = P(v′1,v

′
2,v1,v2).

• P should respect the general conservation laws for momentum and energy. Hence, if the particles
all have the same massm:

v1 +v2 = v′1 +v′2;

and
v2

1 +v2
2 = v′21 +v′22.

Using
2(v2

1 +v2
2) = (v1 +v2)

2 +(v1−v2)
2 ,

which also holds forv′1 andv′2, and using momentum conservation, we may reformulate energy
conservation as

|v1−v2| =
∣

∣v′1−v′2
∣

∣ .

Therefore the transition probability densityP(v1,v2,v′1,v
′
2) vanishes unless the velocities satisfy

momentum and energy conservation.

We first analyse the loss of the distributionf (r ,v, t) due to collisions occurring in a small time
interval∆t. This loss is caused by collisions with particles with a velocity v2 at r . The probability that
two such particles meet in this time interval is given by

f (r ,v, t) f (r ,v2, t)|v−v2|∆t.

Therefore, the loss term due to the collisions can be writtenas

I−(v) = ∆t f (r ,v, t)
∫

f (r ,v2, t)|v−v2|P(v,v2;v′1,v
′
2) d3v2 d3v′1 d3v′2.

The gain term tof r ,v, t) due to the collisions results from collisions of particles with any velocities
v1 andv2 which results in one of the outgoing particles having end velocity v. A similar analysis as
for the loss term results in a gain term

I+ = ∆t
∫

f (r ,v1, t) f (r ,v2, t)|v1−v2|P(v1,v2;v,v′2) d3v1 d3v2 d3v′2.
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To be able to combine this expression conveniently withI− we use time reversal symmetry to swap
the arguments of the collision distributionP and rename the integration variables to obtain

I+ = ∆t
∫

f (r ,v′1, t) f (r ,v′2, t)|v−v2|P(v,v2;v′1,v
′
2) d3v′1 d3v′2 d3v2.

Combining the loss and gain term, we arrive at the final form ofthe Boltzmann equation, including
collisions:

∂
∂ t

f +v ·∇r f = Icoll( f ),

with

Icoll =

∫

|v−v2|P(v,v2;v′1,v
′
2)
[

f (r ,v′1, t) f (r ,v′2, t)− f (r ,v, t) f (r ,v2, t)
]

d3v2 d3v′1 d3v′2.

It is important to realise that in this derivation, we have assumed that the probability for two
particles with velocityv1 andv2, is given by the product of the single particle distributionfunctions:

Prob(r ,v1,v2, t) = f (r ,v1, t) f (r ,v2, t).

This implies a neglect of velocity correlations: a probability depending onv1 andv2 which cannot be
written as the above product is excluded. This implicit assumption goes by the namemolecular chaos.

Note furthermore that the collision term does not affect thenumber density – it only influences
the velocity distribution.

We end this section by writing up the Boltzmann transport equation, which includes the collision
term derived above:

∂
∂ t

f (r ,v, t)+v· ∂
∂ r

f (r ,v, t)+
F
m
· ∂
∂v

f (r ,v, t)=

∫

|v−v2|P(v,v2;v′1,v
′
2)
[

f (r ,v′1, t) f (r ,v′2, t)− f (r ,v, t) f (r ,v2, t)
]

d3v

12.3 Equilibrium – deviation from equilibrium

For equilibrium we now that, in the absence of the collision term, the local distribution function is the
Boltzmann distribution. If we add the collision term, it should not affect the equilibrium distribution.
That this is indeed the case follows from the fact that

f (r ,v′1, t) f (r ,v′2, t)− f (r ,v, t) f (r ,v2, t) =

n2(r)
{

exp
[

−m
(

v′21 +v′22
)

/(2kBT)
]

−exp
[

−m
(

v2 +v2
2

)

/(2kBT)
]

}

= 0,

where the last equality follows from energy conservation atthe collision.
If we deviate from equilibrium, the collisions should driveus back to equilibrium. This process is

expressed in terms of a new quantityH, which is commonly refered to as the Boltzmann function.1

The Boltzmann function is defined as

H(t) =

∫

f (r ,v, t) ln f (r ,v, t)d3r d3v.

It is clear that this quantity is related to the entropy by

H = −kBS.

1Usually people viewH as a character of the latin alfabet. Boltzmann however used the Greek capital form of eta (η).
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The quantityH is a function of time only, so we may calculatedH/dt. We can now evaluate

dH
dt

=

∫ ∂ f
∂ t

(1+ ln f )d3r d3v.

From now on we shall use the obvious abbreviations:

f (r ,v1, t) ≡ f1; f (r ,v′1, t) ≡ f1′

and so on. Furthermore

|v1−v2|P(v1,v2 → v′1,v
′
2) ≡ P̃(1,2→ 1′,2′).

We then have, after substituting Boltzmann’s equation in the equation fordH/dt:

dH
dt

= −
∫

ṙ ·∇r f1 [1+ ln f1]d
3r d3p1 +

∫

P̃(1,2→ 1′,2′)( f1′ f2′ − f1 f2) (1+ ln f1)d3rDv;

whereDv stands ford3v1 d3v2 d3v′1 d3v′2.
Integrating the first term and assuming thatf vanishes if we are far away (outside the volume), we

keep only the second integral. By using symmetry under exchanging coordinates 1 and 2, we obtain

dH
dt

=
∫

P̃(1,2,→ 1′,2′)( f1′ f2′ − f1 f2 )(1+ ln f2)d3r Dv.

We can add the two last expressions for the time derivative toobtain

dH
dt

=

∫

P̃(1,2,→ 1′,2′)( f1′ f2′ − f1 f2 )

(

1+
1
2

ln f1 f2

)

d3r Dv.

As a final step, we use the time reversal symmetry property according to which the swap 1,2↔
1′,2′ should not change the integral. This leads to another expression for the time derivative of the
Boltzmann function:

dH
dt

=
∫

P̃(1,2,→ 1′,2′)( f1 f2− f1′ f2′ )

(

1+
1
2

ln f1′ f2′
)

d3r Dv.

Adding this new form to the old one leads to

dH
dt

=

∫

P̃(1,2,→ 1′,2′)( f1′ f2′ − f1 f2 )
1
4

ln
f1 f2
f1′ f2′

d3r Dv ≤ 0.

The inequality on the right hand side follows from the fact that (y− x) ln(x/y) is always less than or
equal to zero.

We see thatH monotonically decreases. Furthermore,H is a positive number. Therefore,H will
decrease in time until it has reached its minimum value. Thisvalue corresponds to the equilibrium
state. So what does this state look like? It is reached when

f1 f2 = f1′ f2′ ,

or,
ln f1 + ln f2 = ln f1′ + ln f2′ .
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In a homogeneous system, the equilibrium distribution doesnot depend onr , and the last condition for
equilibrium must be satisfied for thef ’s being functions of the momentum coordinate. As we know
that momentum and energy are conserved during collisions, this requirement can be satisfied for any
function f of the form

ln f (p) = A+b ·p+C
p2

2m
,

in other words

f (p) = exp

(

A+b ·p+C
p2

2m

)

.

This is the general form of the Maxwell distribution of a gas with a nonzero total momentum.

12.4 Derivation of the Navier–Stokes equations

In this section we present a derivation of the Navier–Stokesequations from an approximate Boltzmann
equation through a Chapman–Enskog procedure.

If the particles would simply flow according to their initialvelocity, without interaction, equilib-
rium would never be reached: the role of the collisions is to establishlocal equilibrium, that is, a
distribution which is in equilibrium in a small cell with fixed volume, constant temperature, density
and average velocityu. We know this equilibrium distribution; it was derived in the previous section:

f eq(r ,v) = f (r)exp
[

−m(v−u)2/(2kBT)
]

, (12.1)

which holds for cells small enough to justify a constant potential. We have neglected external forces
which would change the velocities for simplicity – they can be included straightforwardly. Once the
liquid is in (local) equilibrium, the collisions will not push it away from equilibrium. It can be shown
that the collisions have the effect of increasing the entropy – hence they generate heat.

Before we continue, we note that the mass mustalwaysbe conserved, whether there are collisions
or not. The mass density is found as

ρ(r , t) =

∫

m f(r ,v, t) d3v. (12.2)

Its evolution can be calculated by integrating the Boltzmann equation, multiplied by the single particle
massm, over the velocity:

∂ρ(r , t)
∂ t

+

∫

mv ·∇r f (r ,v, t) d3v =

∫

(

m
d f
dt

)

collisions
d3v. (12.3)

The second term of this equation can be written as∇ · j(r , t) wherej denotes the mass flux, or mo-
mentum density, of the fluid:

j(r , t) =
∫

vm f(r ,v, t)d3v = ρu, (12.4)

whereu is the average local velocity. The collisions change the velocity distribution, but not the
mass density of the particles – hence the right hand side of (12.3) vanishes and we obtain the familiar
continuity equation:

∂ρ(r , t)
∂ t

+ ∇ · j(r , t) = 0. (12.5)

Another interesting equation describes the conservation of momentum. We would like to know
how j(r , t) changes with time. This is again evaluated straightforwardly by multiplying the Boltzmann
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equation byv and integrate over the velocity. Using the indicesα andβ for the Cartesian coordinates,
we obtain

∂ jα
∂ t

+
∫

mvα ∑
β

vβ ∂β f (r ,v, t)d3v =
∫

mvα

(

d f
dt

)

collisions
d3v, (12.6)

where∂β denotes a derivative with respect to the coordinaterβ . For the right hand side, a similar
statement can be made as for the equivalent term in the mass equation: although individual particles
involved in a collision change their momenta, thetotal momentum is conserved at the collisions. After
thus putting the right hand side to zero, we write (12.6) in short hand notation as

∂ jα
∂ t

+ ∂βPαβ = 0, (12.7)

where we have introduced the momentum flow tensor

Pαβ =

∫

mvαvβ f (r ,v, t)d3v, (12.8)

and where we have used the Einstein summation convention in which repeated indices (in this caseβ )
are summed over. The derivative with respect torβ is in our notation denoted by∂β .

Assuming that we are in equilibrium, we can evaluate the momentum tensor by substituting for
f (r ,v, t) the form (12.1):

P
eq
αβ =

∫

mvαvβ n(r)exp
[

−m(v−u)2/(2kBT)
]

d3v = ρ(r)
(

kBTδαβ +uαuβ
)

. (12.9)

This result can be derived by separately consideringα = β andα 6= β , and working out the appropriate
Gaussian integrals. Noting thatρkBT equals the pressureP,1 we arrive at the following two equations:

∂ρ(r , t)
∂ t

+ ∇ · j(r , t) = 0 (mass conservation); (12.10a)

∂ (ρu)

∂ t
+ ∇r · (PI + ρuu) = 0 (momentum conservation). (12.10b)

Using the first equation, we can rewrite the second as

∂u(r , t)
∂ t

+[u(r , t) ·∇r ]u(r , t) = − 1
ρ(r , t)

∇rP(r , t). (12.11)

The equations (12.10a) and (12.10b) or (12.11) are theEuler equationsfor a fluid in equilibrium.
When the fluid is not everywhere in local equilibrium, the collisions will drive the system towards

equilibrium – hence their effect can no longer be neglected.As mentioned above, the additional
currents which arise on top of the equilibrium ones increasethe entropy and are therefore called
dissipative. Hence these terms describe the viscous effects in the fluid.

We now split the distribution function into an equilibrium and a nonequilibrium part:

f (r ,v, t) = f eq(r ,v)+ f noneq(r ,v, t). (12.12)

The equilibrium term satisfies (12.1).

1Here, we consider the fluid as an ideal gas; a realistic equation of state may be used instead.
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How can we represent the effect of the collision term? There is an approach due to Maxwell,
which is based on the assumption thatall relaxation processes have the same, or are dominated by a
single, relaxation timeτ . In that case:

(

d f(r ,v, t)
dt

)

collisions
= − f (r ,v, t)− f eq(r ,v)

τ
= − f noneq

τ
. (12.13)

As mentioned above, the collisions do not change the mass conservation equation, which should
always be valid. The equation for the flux will however acquire a contribution from the nonequilibrium
part of the distribution function, as we shall see. The mass flux can still be written asρu. Moreover,
the collisions leave the total momentum unchanged.

The flux j occurring in the mass conservation equation also occurs in the momentum conservation
equation. In this second equation, the momentum fluxPαβ occurs, which we have calculated above
assuming equilibrium. If we consider the evolution of this flux using the Boltzmannequation, we see
that the collision effects enter explicitly in this momentum flux.

To find the lowest-order contribution to a systematic expansion of the density, we replacen on the
left hand side of the Boltzmann equation by its equilibrium version:

∂ f eq(r ,v)

∂ t
+v ·∇r f eq = − f noneq(r ,v, t)

τ
. (12.14)

This is anexplicit equation for the nonequilibrium term. It can be shown that this is an expansion
in the parameterℓ/L, whereℓ is the mean free path, andL is the typical length scale over which the
hydrodynamic quantities vary. Note that if we integrate this equation over the velocity, the right hand
side vanishes as the collisions do not affect the mass density.

The momentum flux is defined in (12.8). This is calculated fromthe densityf (r ,v, t) and it can
therefore be split into an equilibrium and nonequilibrium part. The equilibrium part was calculated in
Eq. (12.9), and the nonequilibrium part will now be calculated using (12.14):

P
noneq
αβ =

∫

mvαvβ nnoneqd3v = −τ
[

∫

mvαvβ
∂ f eq

∂ t
d3v+

∫

mvαvβ v ·∇r f eqd3v

]

, (12.15)

where we have again used the notation∂α for a derivative with respect to theα-component ofr . Before
we proceed to work out (12.15) further, we note that the tensor P

noneq
αβ has an important property: its

trace vanishes. This can be seen by writing out this trace:

∑
α

P
noneq
αα =

∫

v2 f noneq(r ,v, t)d3v. (12.16)

Realizing that this expression represents the change in theaverage kinetic energy due to the collisions,
we immediately see that it vanishes as the (instantaneous) collisions leave the total energy invariant:

TrPnoneq= 0. (12.17)

For the calculation of the nonequilibrium stress tensor, Eq. (12.15), we use the following equa-
tions, which can easily be seen to hold for the equilibrium distribution:

∫

m feq(r ,v)d3v = ρ(r); (12.18a)
∫

m(vα −uα)(vβ −uβ ) f eq(r ,v)d3v = ρ
kBT
m

δαβ = Pδαβ ; (12.18b)

u̇α = −∑
β

uβ ∂β uα − 1
ρ

(∂αP); (12.18c)
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where in the last equation it is understood that the velocities are those evaluted for the equilibrium
distribution: this equation is the Euler equation, (12.11)which can also be written as∂tP

eq
αβ (we use

∂t to denote a partial derivative with respect to time).
We first work out the first term in the square brackets on the right hand side in (12.15). After some

manipulation, using Eqs. (12.9), (12.10a) and (12.10b), this can be written as

∂tP
eq
αβ = ∂t

(

Pδαβ + ρuαuβ
)

=

Ṗδαβ −∑
γ

[

∂γ(ρuγ)uα uβ + ρuαuγ (∂γuβ )+ ρuβ uγ(∂γ uα)
]

−uβ ∂αP−uα ∂β P. (12.19)

The second term in the square brackets of (12.15) can be written, using the quantitywα = vα −uα , in
the form [see also (12.9) and (12.18b)]:

∫

(uα +wα)(uβ +wβ)(uγ +wγ)∂γneq(r ,v) d3v =

∂γ
(

uαuβ uγ +uαPδβγ +uβ Pδβγ +uγPδαβ
)

. (12.20)

The second term can now be worked out and yields

∑
γ

[

uαuβ uγ∂γρ + ρuβ uγ(∂γuα)+ ρuαuγ (∂γuβ )+ ρuαuβ (∂γuγ)+

∂γ
(

Puγ
)

δαβ + ∂γ(Puα)δβγ + ∂γ(Puβ )δαγ .
]

(12.21)

Adding the two terms of Eq. (12.15), many terms occuring in the last equations cancel – the ones that
remain are [(12.19) and (12.21)]:

P(∂β uα + ∂αuβ )+ δαβ

{

Ṗ+∑
γ

[

uγ (∂γP)+P∂γuγ
]

}

. (12.22)

The terms
Ṗ+∑

γ
uγ(∂γP) (12.23)

can be calculated using (12.18b) and the equilibrium distribution. When we write this term out, we
obtain, again withwα = vα −uα :

∂
∂ t

∫

mw2 f d3v+∑
γ

uγ ∂γ

∫

mw2 f d3v =

∫

mw2

(

∂ f
∂ t

+∑
γ

uγ∂γn

)

d3v =
1
τ

∫

mw2 f noneqd3v. (12.24)

This is the trace of the tensor
1
τ

∫

mwαwβ f noneqd3v. (12.25)

Now we use the fact that TrPnoneqvanishes. This can only happen when the trace occurring in
the last equation cancels the trace of the remaining terms inthe expression forPnoneq. This tensor
must therefore be

P
noneq= −Pτ

(

∂αuβ + ∂β uα − 2
3

δαβ ∂γuγ

)

. (12.26)
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Using this, we can formulate the momentum conservation equation, with ν = τkBT/m, as

∂u
∂ t

+u ·∇u =
1
ρ

∇P+ ν∇2u+
1
3

ν∇(∇ ·u). (12.27)

The mass conservation equation and the momentum conservation equation together are insuffi-
cient to give us the four unknown field:ρ , u andP. We need therefore an additional equation, which
may beρ = constant for an incompressible fluid, orP ∝ ρ for the isothermal case. Note that the case
whereρ = const also implies∇ ·u = 0 from the continuity equation, which in turn causes the lastterm
in the last equation to become negligible.
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Nonequilibrium statistical mechanics

13.1 Langevin theory of Brownian motion

In this section we consider the Langevin equation, which describes Brownina motion on a microscopic
level. Consider a solution containing polymers or ions which are much heavier than the solvent
molecules. As the kinetic energy is on average divided equally over the degrees of freedom, the ions
or polymers will move much more slowly than the solvent molecules. Moreover, because of their large
mass, they will change their momenta only after many collisions with the solvent molecules and the
picture which emerges is that of the heavy particles forminga system with a much longer time scale
than the solvent molecules. This difference in time scale can be employed to eliminate the details of
the degrees of freedom of the solvent particles and represent their effect by forces that can be treated
in a simple way. This process can be carried out analyticallythrough a projection procedure but here
we shall sketch the method in a heuristic way.

How can we model the effect of the solvent particles without taking into account their degrees
of freedom explicitly? When a heavy particle is moving through the solvent, it will encounter more
solvent particles in the front than in the back. Therefore, the collisions with the solvent particles will
on averagehave the effect of a friction force proportional and opposite to the velocity of the heavy
particle. This suggests the following equation of motion for the heavy particle:

m
dv
dt

(t) = −γv(t)+F(t) (13.1)

whereγ is the friction coefficient andF the external or systematic force, due to the other heavy
particles, walls, gravitation, etc. The motion of fluid particles exhibits strong time correlations and
therefore the effects of their collisions should show time correlation effects. Time correlations affect
the form of the friction term which, in Eq. (13.1), has been taken dependent on theinstantaneousve-
locity but which in a more careful treatment should include contributions from the velocity at previous
times through a memory kernel:

m
dv
dt

(t) = −
∫ t

−∞
dt′ γ(t − t ′)v(t ′)+F(t). (13.2)

This form of the equation must also hold for lighter particles. In order to avoid complications we shall
proceed with the simpler form (13.1). In the following we shall restrict ourselves to a particle in one
dimension; the analysis for more particles in two or three dimensions is similar.

Equation (13.1) has the unrealistic effect that if the external forces are absent the heavy particle
comes to rest, whereas in reality it executes a Brownian motion. To make the model more realistic we
must include the rapid variations in the force due to the frequent collisions with solvent particles on
top of the coarse-grained friction force. We then arrive at the following equation:

m
dv
dt

(t) = −γv(t)+F(t)+R(t) (13.3)
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whereR(t) is a ‘random force’. Again, the time correlations present inthe fluid should show up in
this force, but they are neglected once more and the force is subject to the following conditions.

• As the average effect of the collisions is already absorbed in the friction, the expectation value of
the random force should vanish:

〈R(t)〉 = 0. (13.4)

• The values ofRare taken to be uncorrelated:

〈R(t)R(t + τ)〉= 0 for τ > 0. (13.5)

• The values ofRare distributed according to a Gaussian:

P[R(t)] = (2P
〈

R2〉)−1/2 exp(−R2/2
〈

R2〉). (13.6)

Now let us discretise time. All these above assumptions can then be summarised in the following
prescription for the probability for a set of random forces to occur betweent0 andt1:

P[Ri(t)]t0<t<t1 ∼ exp

(

− 1
2q

∫ t1

t0
dt R2

i (t)

)

(13.7)

with q a constant to be determined.
In the discretised time case, we may assume that the random force is constant over each time step:

at stepn, the value of the random force isRn. For this case, the correlation function for theRn reads

〈RnRm〉 =

∫

dRndRn+1 . . .dRm exp
(

− 1
2q ∑m

l=n R2
l ∆t
)

RnRm

∫

dRndRn+1 . . .dRm exp
(

− 1
2q ∑m

l=n R2
l ∆t
) (13.8)

which yields the value 0 forn 6= m, in accordance with the previous assumptions. Forn = m we find
the valueq/∆t, so we arrive at

〈RnRm〉 =
q
∆t

δnm. (13.9)

For the continuum case∆t → 0 (13.9) converges to theδ -distribution function

〈R(t)R(t + τ)〉= qδ (τ). (13.10)

We now return to the continuum form of the Langevin equation (13.3) withF(t) ≡ 0. This can be
solved analytically and the result is

v(t) = v(0)exp(−γt/m)+
1
m

∫ t

0
exp[−(t − τ)γ/m]R(τ)dτ . (13.11)

Because the expectation value ofRvanishes we obtain

〈v(t)〉 = v(0)exp(−γt/m) (13.12)

which is to be expected for a particle subject to a friction force proportional and opposite to the
velocity.

The expectation value ofv2 is determined in a similar way. Using (13.10) and (13.3) we find
〈

[v(t)]2
〉

= v2
0 exp(−2γt/m)+

q
2γm

(1−e−2γt/m), (13.13)
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which for larget reduces to
〈

[v(∞)]2
〉

=
q

2γm
. (13.14)

According to (13.11),v depends linearly on the random forcesR(t) and as the latter are distributed
according to a Gaussian, the same will hold for the velocity –the width is given by (13.14), so we
have

P[v(t)] =

(

γm
Pq

)1/2

exp[−mv(t)2γ/q] (13.15)

for larget. This is precisely the Maxwell distribution if we write

q = 2kBTγ , (13.16)

so this equation defines the value ofq necessary to obtain a system with temperatureT. In section 12.4
we shall discuss Langevin types of equations in a more formalway, using the Fokker-Planck equation.

The velocity autocorrelation function can also be obtainedfrom (13.11):

〈v(0)v(t)〉 =
〈

v(0)2〉e−γt/m. (13.17)

The absence of a long time tail in this correlation function reflects the oversimplifications in the
construction of the Langevin equation, in particular the absence of correlations in the random force
and the fact that the frictional force does not depend on the ‘history’ of the system.

The results presented here are easily generalised to more than one dimension. However, including
a force acting between the heavy particles causes problems if this force exhibits correlations with
the random force, and Eq. (13.16) is no longer valid in that case. Such correlation effects are often
neglected and the systematic force is simply added to the friction and the Langevin term.

A further refinement is the inclusion of memory kernels in theforces, similar to the approach in
Eq. (13.2). In that case, the random force is no longer uncorrelated – it is constructed with correlations
in accordance with the fluctuation-dissipation theorem:

〈R(0)R(t)〉 =
〈

v2〉γ(t). (13.18)

However, this equation is again no longer valid if external forces are included.

13.2 Fokker Planck equation and restoration of equilibrium

In the previous section we have formulated an equation for a single particle which diffuses and which
feels a forceF which tries to establish some distribution which differs from the homogeneous one.
This force may be derived from a stationary potential. The stationary solution for the velocity equa-
tion, in which the random force is neglected, is

v = −F
γ
,

that is, the force tries to increase the velocity along the force direction, and the friction counteracts this
and in the end there is a balance between that friction and theforce. We now establish an equivalent
of the diffusion equation which includes the effect of a driving force. The flux due to diffusion is

jdiff = −D∇ρ(r , t),
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and the flux due to the driving force, ordrift flux is given by

jdrift = ρ(r , t)
F(r , t)

γ
.

A well-known example of the last relation isOhm’s law, where the flux (current) is linearly related to
the force (which is proportional to the applied electric field).

The diffusion equation can be derived from the requirement that the flux through the surfaceA of
a volumeV equals the change in density inside that volume:

d
dt

∫

V
ρ(r , t)d3r = −

∫

A
j total ·dA

whereA is a unit vector perpendicular to a surface elementdA. Using Gauss’, or divergence theorem,
we can rewrite the right hand side as a volume integral:

∫

V

∂
∂ t

ρ(r , t)d3r = −
∫

V
∇ · j totald

3r.

As this must hold foranyvolume within the system, we obtain thecontinuity equation:

∂
∂ t

ρ(r , t)+ ∇ · j total(r , t) = 0.

Now we can substitute the expressions above for the diffusive and the drift flux:

∂
∂ t

ρ(r , t) = ∇ ·
[

D∇− F
γ

]

ρ(r , t).

Recalling the relation

γ =
kBT
D

from the previous section, we have

∂
∂ t

ρ(r , t) = ∇ ·D [∇−kBTF]ρ(r , t).

This equation is called theFokker–Planckequation. We can check whether this equation makes sense
by investigating whether, in a closed system with some external potential, the density will be dis-
tributed according to the Boltzmann distribution. This turns out to be the case, as is clear from the
fact that for

F =
∇ρ0(r)

kBTρ0(r)

the Fokker–Planck distribution will yield a stationary distribution ρ0(r) which is realised for long
times. This can be checked by putting the left hand side of theFokker–Planck equation to zero, and
checking that the right hand side vanishes for

ρ(r , t) = ρ0(r).

If we now substitute forρ0(r) the Boltzmann factor:

ρ0(r) = exp[−V(r)/(kBT)] ,
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and realise that for
F(r) = −∇V(r),

we see that indeed the Boltzmann distribution is the correctstationary distribution. In fact, this result
tells us again that the relationγ = kBT/D must be valid: if the proportionality factor would be dif-
ferent, the Boltzmann distribution would not be found as thestationary distribution. This relation is
known as theEinstein relation.

Using the expression for the drift current, we can calculatetransport coefficients. First we analyse
electric transport which is due to the acceleration of charges by an electric field. There is a stationary
situation when the diffusion current cancels the drift current. For an electric field along thex-direction:

Jdrift = eD
dρ(r)

dx
,

The electric field is minus the gradient of the potentialV(r), which determines the charge density
ρ(r):

ρ(r) = ρ0e−eV(r)/(kBT),

hence
dρ(r)

dx
=

eEx

kBT
ρ(r)

from which we find for the conductivity

σ =
e2Dρ(r)

kBT
.

This is essentially the famousDrude formula. The expression for the electric drift current:

Jel =
e2Exρ(r)

γ

gives the same result provided that
D

kBT
=

1
γ
,

in accordance with what was found above. It should be noted that the above derivation is performed
in the context of a stationary equilibrium state, where the net current should be zero indeed. If the
boundary conditions are such that there is a source and drain(the contacts), then a net current survives.

13.3 Fluctuations – the Wiener-Kintchine theorem

In our discussion of the Langevin equation, we have encountered a fluctuating quantity: the random
force. There we have assumed that this random force had no time correlation. In this section we shall
study fluctuating quantities which are correlated in time. Consider a quantityA (you may think of
a more realistic random force in the Langevin equation) which has an average value of 0 but which
fluctuates in time. The autocorrelation function is defined as

K(s) = 〈A(t)A(t +s)〉 = lim
T→∞

1
T

∫ T

0
A(t)A(t +s)dt.

This is a time averaged quantity. The quantityK(s) satisfies the property

K(s) = K(−s),
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as can readily be checked by inspecting its definition.
We expect furthermore that, since〈A(t)〉 = 0, the autocorrelation correlation function vanishes

for large values ofs, and that it will attain its maximum fors= 0 (then the integrand in the average
is always positive). It turns out that the autocorrelation function is intimately related to the so-called
spectral density, defined in terms of the Fourier transform ofA in the time domain. The latter is
defined as

Ã(ω) =
1√
T

∫ T

0
A(t)eiωtdt.

where the limitT → ∞ is implicitly assumed – a convention we shall adhere to from now on. Usually,
A is such thatA2 is related to some energy. For example, in the case whereA is a component of an
electric field,A2 is the contribution of that component to the energy stored inthe oscillating field.

Thespectral densityof the variableA is defined as

S(ω) =
〈

Ã(ω)Ã∗(ω)
〉

.

We can evaluate the right hand side as follows:

S(ω) =
1
T

〈

∫ T

0

∫ T

0
A(t)eiωtA(t ′)e−iωt ′dtdt′

〉

=
1
T

∫ ∫

〈A(t)A(t +s)〉eiωte−iω(t+s)dtds

where the shift of the integration variable was made possible because the quantity in brackets is known
to beK(s), which has a finite width. If we take the limit forT → ∞, we find

S(ω) =

∫ T/2

−T/2
K(s)e−iωsds≡ K(ω).

This relation is known as theWiener-Kintchine theorem. Note the absence of the factor 1/T in front
of the Fourier transform ofK. If the width of K(s) is calledτ , then the width ofK(ω) will be 1/τ
(reminiscent of the Heisenberg uncertainty relation in quantum mechanics).

Let us now come back to the Langevin equation, but refrain from imposing a non-coherence for
the random force. The equation of motion

mv̇ = −γv+R(t)

with R the random force still holds. As we have seen, the solution ofthis equation can be written as

mv(t) = e−γt/m
∫ t

0
eγt ′/mR(t ′)dt′

where we have assumed that the initial velocity was zero. We now evaluate the average kinetic energy:

m
2

〈

v2(t)
〉

=

〈

1
2m

e−2γt/m
∫ t

0
eγt1/mR(t1)dt1

∫ t

0
eγt2/mR(t2)dt2

〉

where the expectation value is over the different possible realisations of the random force.
Using the fact that

〈R(t1)R(t2)〉 = KF(t2− t1),

is short-ranged so thatt1 ≈ t2 and taking the limit of larget, we obtain, using the variables

T =
t1 + t2

2
andτ = t2− t1,
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〈Ekin〉 =
e−2γt/m

2m

∫ t

0
e2γt

∫ t

0
e2γT/mdT

∫

K(τ)dτ =
P

2γ
K̃F(0)

(

1−e−2γt/m
)

which, for t → ∞ reduces to

〈Ekin〉 =
1
2γ

K̃(0).

As before, we may put the kinetic energy equal tokBT/2 to obtain

γ =
1

kBT
K̃F(0).

As mentioned before, this friction exponent directly determines the value of the transport coefficients,
such as the electric conductivity.

Now we shall focus on this last example, and instead of theω = 0 case, analyse the frequency
dependence. To this end, we replace the expectation value ofv2(t) on which the above derivation
was based, by the autocorrelation function. We have evaluated this function in section 12.3; the result
obtained there was

〈v(0)v(t)〉 =
kBT
2m

e−γ |t|/m,

where the equipartition theorem has been used to rewrite
〈

v2(0)
〉

in terms ofkBT. The Fourier trans-
form of this gives us

Kv(ω) =
kBT

γ
1

1+(ωm/γ)2 .

According to the Wiener-Kintchine theorem, this is relatedto the power spectrum:

〈

|v(ω)|2
〉

=
kBT

γ
1

1+(ωm/γ)2 .

This formula implies that the spectrum of the current power,induced by the fluctuations, is flat, i.e. it
does not depend onω for frequencies (much) smaller thanm/γ , which is the inverse relaxation time
of the electrons. This means that we have white noise up to this limit.

In the previous section, we have derived the result

γ =
1

kBT
K̃v(0).

The parameterγ determines the transport properties, such as the conductance. In particular, we have

j = nev= ne2 E
γ

whereE is a component of the electric field. Therefore, the conductance is found as

σ =
ne2

γ
=

ne2kBT

K̃v(0)
.

This means that we can evaluate the transport coefficientσ from the autocorrelation function for the
velocities. This is a striking result: the autocorrelationfunction is a property of theequilibriumsystem
– from this, we can evaluate the transport coefficient, whichis anon-equilibriumproperty.



129

The Wiener Kintchine theorem has an important application in electric circuits. Consider for
example an inductance in some electric circuit. The electric energy stored in the inductance is given
by the expression

Eel =
L
2

I2.

It is generally assumed that thetotal energy of the circuit can be written as

Etotal = Eel(I)+ other terms,

where the ‘other terms’ do not depend onI . This means thatI acts as a generalised coordinate of the
Hamiltonian, and it should therefore satisfy the equipartition theorem

LI2

2
=

kBT
2

.

The power stored in a mode with frequencyω is

L
2

〈

I2(ω)
〉

= J(ω).

In equilibrium, the total power should yield
∫

L
2

〈

I2(ω)
〉

dω =
kBT

2
,

therefore, for frequencies (much) smaller than those corresponding to the relaxation time of the circuit,
we must have white noise analogously to the case discussed above, and the power containes within a
frequency windowdω should be

∫

L
2

〈

I2(ω)
〉

dω =
kBT

2
dω .

This result is known asNyquist’s theorem.

13.4 General analysis of linear transport

Quite generally, fluctuations of a system from the equilibrium state can be related to the transport
properties of that system. The analysis proceeds as follows. Suppose we have an isoalted system,
which tends to maximise its entropy. The entropy depends on how the energy and the particle density,
and perhaps some other quantities, are distributed in space. We can store the information concerning
these distributions in a set of numbers – you may think of the Fourier coefficients of the energy and/or
denisty distribution. We call these numbersxi and we call ˜xi the values for which the entropy assumes
its maximum.

Fluctuations correspond to deviations of thexi from their equilibrium values. The corresponding
variation in the entropy can be expanded in a Taylor series:

S(x1, . . . ,xN) = S(x̃1, x̃2, . . . , x̃N)+
1
2 ∑

i, j

∂ 2S(x̃1, x̃2, . . . , x̃N)

∂xi∂x j
(xi − x̃i)(x j − x̃ j)+ . . . .

The fact that the first-order term is not included is due to thefact thatS was expanded around its
maximum– hence, the first derivatives are all zero. The fact that the entropy strives to its maximum is
the driving force which causes fluctuations to dampen out.
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Recalling that
S= kB lnΩ,

whereΩ is the number of states accessible to the system, and combining this with the fundamental
postulate if statistical mechanics, which says that each ofthese states is equally probable, we have for
the probability of having a state where the quantitiesai = xi − x̃i the following expression:

P(a1, . . . ,aN) =
exp
(

−∑i j
γi j

2 aia j
)

∫ ∞
−∞ da1 · · ·daN exp

(

−∑i j
γi j

2 aia j
) ,

where

γi j =
1
kB

∑
i, j

∂ 2S(x̃1, x̃2, . . . , x̃N)

∂xi∂x j
.

Note that the fact thatShas a maximum implies that the matrixγi j has positive eigenvalues.
From this we can derive a simple expression for correlation functions of theai . Note that

1
P

∂P
∂ai

=
1
kB

∂S
∂ai

.

Taking the average on the left and right hand side with respect to the distributionP we obtain
〈

ai
∂S
∂ai

〉

==

∫

da1 · · ·daN ai
∂S
∂ai

P = kB

∫

da1 · · ·daN ai
∂P
∂ai

Integrating by parts the integral on the right hand side leads to
〈

ai
∂S
∂ai

〉

= −kB.

Moreover, fori 6= j we find along the same lines:
〈

ai
∂S
∂a j

〉

= 0.

You may object that the first derivative ofS with respect to theai is zero. This is true at the
maximum, but near that maximum, we find

∂S
∂ai

= ∑
j

γi j a j .

Using this we rewrite the result above as

∑
i j

γik
〈

aka j
〉

= kBδi j .

As ai represents a fluctuation in some quantity, we can identifyδ ẋi as some kind ofcurrent(below
we shall consider an example). The entropy changes in the course of time as

dS
dt

= ∑
i

δ ȧi
∂S
∂ai

,
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which suggests that we can interpret∂S/∂ai = Xi as thedriving forcecorresponding to that current.
Now we assume a linear relationship between the forcesXi and their resulting deviationsai :

Ji = ȧi = ∑
j

Li j
∂S
∂a j

= ∑
j

Li j Xj .

Now we consider the expectation value
〈

ai(t + τ)a j(t)
〉

=
〈

ai(t)a j(t)
〉

+ τ
〈

δ ȧi(t)δx j (t)
〉

=
〈

ai(t)a j(t)
〉

+ τ ∑
m

Lim

〈

∂S
∂am

a j(t)

〉

=
〈

ai(t)a j(t)
〉

+ τLi j kB.

We see that the linear transport coefficientsLi j are found as the correlation functions of the fluctua-
tions:

Li j =
1

kBτ
[〈

ai(t + τ)a j(t)
〉

−
〈

ai(t)a j(t)
〉]

.

From this, we see that the transport coefficients must be symmetric:

Li j = L ji .

This nontrivial property follows from what is calledmicroscopic reversibilityas it reflects symmetry
properties of microscopic correlation functions which follow from the undrlying time reversal sym-
metry of the microscopic dynamics.

We can analyse further the relation betweenLi j and the correlator. Suppose we had in the above
derivation not multipliedai(t + τ) with a j(t) but witha j(0). In that case, we arrive at the result:

Li j =
1

kBτ
[〈

ai(t + τ)a j(0)
〉

−
〈

ai(t)a j (0)
〉]

=
1

kBτ
[〈

ai(t)a j(−τ)
〉

−
〈

ai(t)a j (0)
〉]

where we have used time translation symmetry.
Now we approximate finite differences by time derivatives:

Li j ≈− 1
kB

〈

ai(t)ȧ j (0)
〉

= − 1
kB

∫ t

0

〈

ȧi(t
′)ȧ j(0)

〉

dt′.

If we taket much larger than the correlation time, we see that

Li j ≈− 1
kB

∫ ∞

0

〈

ȧi(t
′)ȧ j(0)

〉

dt′.

Recall that ˙ai is the currentj i , and we see that we have found an expression for the linear transport
coefficientLi j in terms of a time correlation function of the currents:

Li j ≈− 1
kB

∫ ∞

0

〈

Ji(t
′)Jj(0)

〉

dt′.

How does this relate to a specific process, such as diffusion?First we must identify the dependence
of the entropy on the density. The parametersai are here the coordinates of the particles in the system.
We use the thermodynamic relation

TdS= −µdN+dE− 1
T ∑

i

Xiai .
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In this expression, the first two terms are always present, and the last term is used to store additional
contributions resulting from external forces. The resulting fluxes are not necessarily the fluxes which
are of interest to us. In particular, they are not spatial fluxes, but simply time derivatives. However,
we can derive relations for spatial fluxes through some trickas we shall now show. It is clear that for
the entropy densityswe have

ds
dt

=
∂s
∂ t

+ ∇ · js,

where js is the entropy flux, which tells us how much entropy flows through a wall per unit area.
For the particle density we have a similar formula, which, together with the conservation of particle
density gives

∂ρ
∂ t

+ ∇ · j = 0.

We assume that similar conservation laws hold for the other quantities occuring in the problem.
From the thermodynamic relation above, we have

∂s
∂ t

= −µ
T

∂ρ
∂ t

+
1
T

∂E
∂ t

−∑
i

Xi

T
∂ai

∂ t
.

Then we see, after replacing all time derivatives by the appropriate fluxes, using the conservation laws
that

ds
dt

= −∇
(µ

T

)

j + ∇
(

1
T

)

jE − ∑
i

(

Xi

T

)

Ji .

This is of the same form as found above provided that we interpret the quantities

−∇
(µ

T

)

, ∇
(

1
T

)

, ∇−
(

Xi

T

)

as forces for the appropriate fluxes. We immediately see thatthe driving force for heat transport is the
gradient of 1/T, and that of particle transport is the gradient of−µ/T. Provided we do not apply a
temperature gradient to the system, we have for the driving force for the particle flux:

− 1
T

∇µ .

The linear relationship between the current and this force can be cast in the form

Ji = − 1
T ∑

j

L̃i j
∂ µ
∂x j

,

where i and j assume the values 1,2 and 3. With the tilde ˜ we have indicated that the transport
coefficient may deviate from the coefficient of the Onsager relation, because the current is not a time
derivative. We use

Ji(r , t) = ρ(r , t)vi(r , t)

and the fact that any time correlation function of the currents is dominated by the velocity time corre-
lation function. The latter is given as

〈

vi(t)v j(0)
〉

=
〈

v2(0)
〉

e−t/τ δi j
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whereτ = D, the diffusion coefficient. Integrating this over time gives

L̃i j =
1
kB

∫ ∞

0

〈

vi(t)v j(0)
〉

dt =
1
kB

τδi j =
D
kB

δi j .

So we see that

vi = − 1
ρ

D
kBT

∂ µ
∂xi

,

so that

Ji = − D
kBT

∂ µ
∂xi

.

In order to arrive at the diffusion equation, we must realizethat, for low densities,

µ(ρ) = µ(ρ0)+kBT ln

[

ρ
ρ0

]

,

so that we obtain

Ji = D
∂ρ
∂xi

,

hence
J = D∇ρ .

Adding an electric term

− 1
T

V(x)qdρ(x)

to the expression for the entropy, gives us the force on particles with chargeq in a potential:

J =
D
kB

[

∂ µ
∂xi

+
q
T

E

]

nicely in line with our previous results.
The Onsager formulation provides an abstract framework from which the various forces and cur-

rents can quickly be derived.


