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Preface

This is a set of lecture notes which is intended as a suppodtfidents in my course ‘advanced sta-
tistical mechanics’. This is a typical graduate course enstlibject, including some non-equilibrium
thermodynamics and statistical physics. The course haghweears been based on different books,
but the informed reader will recognise the structure of thekbby Pathria $tatistical Mechanigs
1992) in the first part (equilibrium phenomena) and from smvehapters of the book by Bellac,
Mortessange and BatrouriEquilibrium and non-equilibrium statistical thermodynias) 2004). An-
other important contribution is provided by the lectureasoby Hubert Knops for his statistical me-
chanics courses at Nijmegen. My lecture notes are therbfor® means original, but they intend to
combine the parts of all the sources mentioned into a coharehclear story.

However, this story does by no means qualify as a textbook,iasoo sketchy and superficial
for that purpose. Itis merely intended as a support for stigd®llowing my lecture course. | hope it
helps.

It should be noted that these notes do not fully cover the ma&taf my course. | usually make
a selection of about 80 % of the material in these notes, anithdilremaining time with additional
topics, e.g. the exact solution of the Ising model in 2D ordpsilon-expansion. | intend to include
these topics into the course, together with a discussiomlgfiers and membranes.
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The statistical basis of Thermodynamics

This chapter reviews material that you should have seendéafmne way or another. Therefore it is
kept very brief.

1.1 The macroscopic and the microscopic states

Notions of statistical mechanics:

e Extensive/intensive quantitied, V are respectively the number of particles and the volume of
the system. We let both quantities go to infinity, while kegpihe ration = N/V constant. In that
case, quantities which scale linearly with(or N) are calledextensivewhile quantities which do
not scale withv (or N) are calledntensive The densityn = N/V is an example of an intensive
quantity.

e A macrostate is defined by values of the macroscopic parasnetdch can be controlled. For a
thermally and mechanically isolated system, thesé\aie andV .

e A microstate is a particular state of a system which is comsisvith the macrostate of that sys-
tem. For an isolated classical system, a microstate is af ggtsitions and momenta which are
consistent with the prescribed enetgyvolumeV and particle numbekx.

e The quantityQ(N,V, T) is the number of microstates which are consistent with aquéat macrostate.
This number may not be countable, but we shall see that thldgm is only relevant in the clas-
sical description — in a proper quantum formulation, the banof states within a fixed energy
band is finite (for a finite volume).

1.2 Contact between statistics and thermodynamics

Two systems, 1 and 2 are in thermal contact. That is, thepeeive volumes and particle numbers
are fixed, but they can exchange energy. The total energydd,fixowever, to an amouis,. In
that case, théotal system has a number of microstates which, for a particulditipaing of the total
energy(Es, E2), is given by

QO (N1, V1, E1,Na, Vo, Eo) = Q(N, Vi, E1)Q(Np, Vo, Ey),

with E = E; + E;, constant. Because the particle numbers are very large utiretity Q©) is sharply
peaked around its maximuas a function of E Therefore, thenost likelyvalue ofE; is equal tothe
average valuef E;. We find the most likely value by putting

dINQO(Ny,V1,Eq,Np, Vs, Ep)
0E;

1



equal to 0. This leads to the condition for equilibrium:

dIn Q(Nl,Vl, El) . dln Q(Nl,V]_, Ez)
JE; B 0E; '

The partial derivative of I@ with respect to energy is callgél We have
B=1/(ksT) S=kInQ(N,V,E).

Sis theentropyandT thetemperature

1.3 Further contact between statistics and thermodynamics

Similar to the foregoing analysis, we can study two systetmighvare not only in thermal equilibrium
(i.e. which can exchange thermal energy) but also in mechaeguilibrium (i.e. which can change
their volumesy; andV, while keeping the suiy +V, =V constant). We then find that, in addition
to the temperature, the quantity

P dInQ(N,V,E)
keT oV

is the same in both systems, i.e. pressure and temperatutieeasame in both.
If the systems can exchange particles (e.g. through a hb#),the quantity

u dInQ(N,V,E)

Z:_kBT oN

is the same in both. The quantityis known as thehemical potential
In fact, P andu are thermodynamic quantities. We have derived relatiohsd®n these and the
fundamental quantit@2(N,V, E) which has a well-defined meaning in statistical physics ¢asl v
andE) by using the relation
S=ksInQ

and the thermodynamic relation
dE = TdS— PdV+ udN.

The following relations can be derived straightforwardly:

p_ (9E\ . ,_(9E\ . _/(¢E
v )y FT\an) g T TN\es)

Here,(0... /0y)a73 denotes a partial derivative with respectytat constantr andf3.
Finally, you should know the remaining most important thedynamic quantities:

e Helmholtz free energy
A=E-TS

e Gibbs free energy
G=A+PV=E-TS+PV =_puN;

e Enthalpy
H=E+PV=G+TS



e Specific heat at constant volume
0S
T
&= (cﬂ)
e Specific heat at constant pressure:

co_1(9S) _(2E£PV)\ _(0H
" \aT NP ot np \OT /yp

1.4 Theideal gas

B\
oT Jnv

i

If N particles in a volum& do not interact, the number of ways the particles can beillised in that
volume scales agN, i.e.
QoOvN.

P /dInQ(N,E\V) N
?_@< EN; )NE_@V'

For a consistent derivation of the entropy, we consider tqodar example: a quantum mechanical
system consisting of particles within a cubic volume= L2 and with total energf. The particles

have wavefunctions
- )sin(%07) (%0

P(x,y,2) = (%)3/zsin(n

n? e
E=o iz (+m+n) =

For N particles, we have the relation

Therefore

with energy

h? 3 2 2
= _mZ Jx+nj,y+nj,2)v

that is, the energy is the square of the distance of the appteoint on the R dimensional grid.
The numbeQ(N,V, E) is the number of points on the surface of a sphere with radin§/2? in a
grid with unit grid constant in R dimensions. But it might occur that none of the grid poinés li
precisely on the sphere (in fact, that is rather likely)! tder to obtain sensible physics, we therefore
consider the number of points in a spherical shell of rading& 2> and thickness much smaller than
the radius (but much larger than the grid constant). The murabpoints in such a grid is called
The surface of a sphere of radius 3N dimensions is given by

2n3N/2 r?;Nfl
(3N/2—1)!

Multiplying this by or gives the volume of a spherical shell of thickn@ss We use the fact that each
grid point occupies a unit volume to obtain the number of gaihts within the shell. In order to



include only positive values for each of they, o = X,y,z, we must multiply this volume by a factor
23N Using finally the fact thal is large, we arrive at the following expression for the epyro

3/2
SIN,V,E) = NkgIn | % (%) ] + 3Nk,

h3 2

We have neglected additional terms containing the thickiéshe shell — it can be shown that these
are negligibly small in the thermodynamic limit. This exgg®n can be inverted to yield the energy

as a function o5, V andN:
3h2N 2S
E(SVN) = ——— — 1.
(SV:N) 4an2/3eXp<3NkB >

This equation, together wifi~1 = (0S/0E)yy, leads to the relations

3 3 5
E=-NkeT, Cv=3Nke. Cr=:Nike.

From the last two relations, we find for the ratio of the twodfie heats

Cp_5
Cv 3
It can be verified that the change in entropy duringsaithermalchange of a gas (i.&N andT
constant) is
St —S =NkgIn (Vs /V)).

Furthermore, during aadiabatic changdi.e. N andS constant),
PVY =const; TV'"!=const

with y=5/3. The work done by such an adiabatic process is given by

2E

These relations are specific examples of more general thigmamic ones.

1.5 The entropy of mixing and the Gibbs paradox

If we mix two gases which, before mixing, were at the samesguesand temperature, then it turns
out that after the mixing, the entropy has changed. This iset@xpected because, when the two
original gases consisted of different types of molecules,antropy has increased tremendously by
the fact that both species now have a much larger volume iatdisposal. This difference is called
the mixing entropy. A straightforward analysis, using the express$arthe entropy derived in the
previous section, leads to a mixing entrap$

Vi +V Vi +V
AS= kg [Ny In 22 L N\pin 1:; 2\,
1 2

Now consider the case where the two gases contain the sam@kimolecules. According to
guantum mechanics, two configurations obtained by integing the particles must be considered



as being identical. In that case, the mixing should not imib@ethe entropy, so the above result
for the mixing entropy cannot be correct. This paradox isvkma@s theGibbs paradox. It is a
result of neglecting the indistinguishability. A more daterederivation of the entropy, taking the
indistinguishability of the particles into account, leddghe famousSackur-Tetrode formula

\ 3 5 2rmke T

This formula is derived by multiplyind2 (the number of states) by/MN! in order to account for
the indistinguishability in case alle particles occupyfatiént quantum states. This expression for
the entropy leads tAS = 0 for identical particles. The expression above &% remains valid for
non-identical particles.

Note that the process in which the wall is removed, changestiropy, but does not correspond
to any heat transfer, nor does it involve any work. The faat the entropy changes without heat
transfer is allowed, as the second law of thermodynamitesthatAQ < TAS. The equals-sign only
holds for reversible processes.

1.6 The “correct” enumeration of the microstates

This section argues how and why the indistinguishabilitythaf particles should be included in the
derivation of the entropy. For a system with particles in quantum state h; particles in state 2
etcetera, it boils down to dividing the total number of statalculated for distinguishable particles,
by

N!

In deriving the Sackur—Tetrode formula, we have takemthe be either 0 or 1.
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Elements of ensemble theory

2.1 Phase space of a classical system

Thephase spacis the space of possible values of the generalised cooedigaitd canonical momenta
of the system. Remember the generalised coordinates camylmardinates which parametrise the
accessible coordinate space within perhaps some givetraios. In our case, we shall most often
be dealing with a volume within which the particles must mas the coordinates are simply the
variablesr; (i labels the particles) which are constrained to lie wiinThe motion of the particles
is determined by the Lagrangian, which is a function of thaegalised coordinateg; and their
derivatives with respect to timg:’

L = L(q;,qj,t).
The equations of motion are the Euler-Lagrange equations:

doL oL
dtog; ~ dq;°

The canonical momenta are defined as

and these can be used to construct the Hamiltonian:
H(pj,a5) =) pjd; — L.
]

Note thatH is a function of thep; andq;, but not of theq;, which nevertheless occur in the definition
of H. In fact, theq; must be formulated in terms of and p; by inversion of the expression giving
the p;. For example, for a particle in 3D, we have

pj; = mq;,

for which d; can very easily be written in terms of tipg.
The Euler-Lagrange equations of motion can now be formdlatéerms of the Hamiltonian:

o,
] apj’
5 = _9H
T



These equations are completely equivalent to the Eulerdrag equations. In fact, the latter are
second order differential equations with respect to timtdctvare here reformulated as twice as many
first-order differential equations. The Hamiltonian edprad clearly give a recipe for constructing the
time evolution in phase space given its original configorati The latter is a point in phase space,
from which a dynamical trajectory starts.

In statistical mechanics, we are interested in the proitald find a system in a particular point
(a,p) ((q,p) is shorthand for all the coordinates). This probability Isoacalled thedensity func-
tion p(q, p;t). Any physical quantity is defined in terms of the dynamicaialales p; andq;. The
expectation value of such a quantitycan be written as

fy = L (@ P)p(a pit) Pp dg
[p(g.pt) dNpdNg

where the denominator is necessary in the case wher@ot normalised.

2.2 Liouville’s theorem and its consequences

We are not interested in the individual dynamical trajdesmiof a system. Rather we want to know
the probabilities to find our system in the points of phasespige. the density functiop, so that we
can evaluate expectation values of physical quantitiesun\tile’s theorem is about the change in the
course of time of the density function. Suppose we stay ategooint(q, p) in phase space. At that
time, the change of the density is

Jp

E.

/0pdw

(dwis shorthand fod®N p d®Ng). This change can only be caused by trajectories startitigmi and

moving out of it, or trajectories starting outsideand moving in. The flux of phase space points is

given bypv, wherev is shorthand for the vectdip, q): it is the velocity of the points in phase space.
The number of points leaving and entering the system pemfitilne can be evaluated as

/. pv-ndo,
g

whereo is the boundary ofv. Using Gauss’ theorem, this can be written as a volume iategr

/ div(pv) dw

The flux of points across the boundary is the only cause ofgianthe density inside, as there are
no ‘sources’ or ‘sinks’ (trajectories do not disappear qregr). From these considerations, and from
the fact that the shape of can be arbitrary, we see that the following relation mustihol

op | . B
i +div(pv) =

We now work out the second term:

ap 0q; 0p,>
+ +opp )+ — 4 =) —o
z((?qjq’ > pZ(f?qJ ap

The density in some volum® changes as



Using the equations of motion, the last group of terms is se@anish, and we are left with
dp 6p 6p
o +Z<0q, p,> +{p H} =0,

where the expression on the left hand side can also be wagdp(t)/dt. It is useful to emphasise
the difference betweedp /ot anddp/dt. The former is the change of the density function at a fixed
point in phase space, whereas the latter is the change oftisityl function as seen by an observer
moving along with the trajectory of the system. The last équnaexpresses the fact that such an
observer does not see a change in the density. This now igilles theorem.

The bracketq, } are called thé>oisson bracketsThey are for classical mechanics what commu-
tators are for quantum mechanics. In fact, the resultingaggps for the classical density function
and the quantum density operator in Heisenberg repregantzn be compared:

d 0

d_Ft) op +{p H} (class.);

do 0p [

4t = gt 7 lpoH] (quantum)

The intimate relation between classical and quantum meéchas helpful in formulating statistical
mechanics.

We now define equilibrium as the condition tlet /dt be equal to 0, so the question arises how
this condition can be satisfied. One possibility is to havemsity function which is constant in time
and in phase space so that baih/dt and|[p,H] vanish. This is however not physically acceptable,
as infinite momenta are allowed in that case. Another pdigils to havep not depending explicitly
on time (this is mostly the case — it means that there is naratieime-dependent field) but being a
function of H. This is usually assumed. It implies that for some particutdue ofH, every point in
phase space compliant with that value, occurs equallylikehis is the famougpostulate of equal a
priori probabilities.t

2.3 The microcanonical ensemble

Any particular choice for the density function is calledemsembleThis refers to the idea of having
a large collection of independent systems, all having timeesealues for their controllable external
parameters (energy, volume, particle number etcetera)(itogeneral) different microstates. The
microstates all occur with a probability given by the degnsitnction — therefore, determining the
average of a physical quantity over this ensemble of systearsesponds to the expression given at
the end of section 2.1.

For an isolated system, the energy is fixed, so we can write

p=p(H)=20[H(q.p)—E]

Obviously, there are some mathematical difficulties inedlin using a delta-function — one may
formulate this as a smooth function with a variable widthaethtan be shrunk to zero.

The density functiorp gives us the probability that we find a system in a state), and we
can use this in order to find the average as described above. This average is callecetigemble

Iparthia formulates this a bit differently on page 34, but Irhvery happy with his description.



average This is equal to the time average of the quanfity the stationary limit. This result is called
thefundamental postulate of statistical mechanics

Obviously, the phase space volume accessible to the systgmoportional to the number of
microstates accessible to the system. If we consider plpase @5 continuous (as should be done in
classical mechanics), however, that number is always iafiitrespective of the number of particles).
In quantum mechanics we do not have this problem, as thesstetegiven as wavefunctions and not
as points(q, p). The connection between the two can be made by consideringpaekets which are
localised in bothg-space ang-space. In view of the Heisenberg uncertainty relations¢hgackets
occupy a volume- h per dimension in phase space. Therefore, it appears thatitha fundamental
volume h®N which is occupied by quantum state of the system. Theretbeerelation between the
number of stateE and the occupied volum® in phase space is given by

M =w/hN.

For the microcanonical ensemblejs the volume of a thin shell in phase space where the enezgy li
betweerE —A/2 andE +A/2. We call this shelbw.

2.4 Examples

First we consider the case dF non-interacting point particles, that is an ideal cladsgas. The
number of states in the energy sh&tb is given by:

Ar= [ dNpdNg.
Aw
As the potential vanishes, the integral oggyieldsVN. The integral over the momenta can be eval-
uated using the results for &rdimensional shell used in section 1.4, and we find for the bemof

states within the shell: \
1 \Y AE
Af=—— | —(2mmE)¥?| —.
(3N/2—1)! [h?’( ) E
In order to take the indistinguishability of the particlega account, we must divide this number by
N!. The entropy can then be calculated as above, resultingeisackur—Tetrode formula.
Our general formalism also allows to evaluate the entropy sihgle particle. As an example, we
consider the harmonic oscillator: )
P K 5

~om 2"

From this equation, the points with constant energy are sedia on ellipses. In order to find the
volume (in our 2D phase space this is a surface area), we admnthe coordinates in order to map the
ellipse onto a circle:
g9 L, P
V2E/mw’ V2mE

with, as usualw = /k/m. Do not confuse thigv (angular frequency) with that representing the
volume in phase space. Then the volume of the ellipse canumel fto be

_2m
o

Al



3
The canonical ensemble

3.1 Equilibrium between a system and a heat reservoir

Suppose we have a large, isolated system which we divide topaitvery small one and the rest.
The small subsystem can exchange energy with the rest of/¢ens, but its volume and number of
particles is constant. Consider a statif the small subsystem with energy. How likely is it to find
the subsystem in this state? That depends on the numbertes sthich are accessible to the rest of
the system (this is called theeat batf), and this number is given &(E — E; ), whereE is the energy
of the total system. Therefore, the multiplicity of the staiith energyg; is

Pr — Q(E - Er)
We know thatQ of the heat bath is given as €§§/ks). We then have: use

+-onse o] [ 55] ) -enff2-).
so that we obtain
P =P(E) Oexp(—E; /keT) = e P&

with 3 =1/ksT. B is theBoltzmann distribution function

As the subsystem is very small in comparison with the totalesy, its temperature will be deter-
mined by the latter. Therefore the temperature of the sibsysvill be a control parameter, just as
the number of particledl and its volumeV. If we consider a set of systems which are all prepared
with the sameéN, V andT, and with energies distributed according to the Boltzmamutol, we speak
of acanonical or (N, V, T) ensemble

3.2 A system in the canonical ensemble

A more formal approach can be taken in the calculation of ém®nical and other distributions that we
shall meet hereafter, which is based on a very general defirof entropy. In a quantum mechanical
formulation, this entropy is formulated terms of the quamtdensity operator as

S=—-kgTrplnp.

Writing
p=S NP
r

leads to the same expression as above

S:—kB PInP.
Z r r

10
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The basic postulate now is that, given expectation valuesxXternal parameters, the density matrix
will assume a form which maximises the entropy defined thig wa

This expression for the entropy is often used in informatteeory. Furthermore, it turns out that
expressions for the entropy that can be derived from morsipalyarguments are all compatible with
this general expression.

Let us first note that theNV E) ensemble is the most natural one to define in classical ortguan
mechanics: the number of degrees of freedom is well-definiedtiie particle numbeN) and the
potential does not explicitly depend on time (the volumexedi i.e. the walls do not move). Then,
the Hamiltonian is conserved and it can be identified withe@hergy. Now suppose that there is
a numberM of states with the prescribed energy. We must find the digtdb P, which makesS
stationary under the constraint tHatis normalised. This is done using a Lagrange multiplieiVe
define

M
F=S-AYR
er f
and now requird- to be stationary:
oF
This leads to a family of solutions
+A
R::@m<—5%E—>,

parametrised by. TheP; are thus all equal. We must now adjussuch as to satisfy the constraint
thatP be normalised. This then leads to

We see that for the microcanonical ensemble, the distdbwtihich maximises the entropy is the one
in which each state has the same probability of occurrence.

Instead of requiring that each of the parametédrd/ or E be fixed, we may relax any of these
conditions and require thexpectation valuéo assume a certain value rather than the stronger condi-
tion that the parametenay only assuma certain value. We shall work this out for the energy. In the
context of quantum mechanics, this is a bit tricky as we maktutate the variation of an operator.
However, if we assume that the density operator can be wiiittéhe form

p=Y INR]

with |r) being eigenstates of the Hamiltonian, the solution of theblem is similar to that of the
classical case.
We now have an additional constraint, that is,

(E)=Y PE

is given. HereE; is the energy of the state We now havewo Lagrange multipliers, one for the
energy (which we cakg3) and one (agaiil) for the normalisation:

F=S-ASR-ksB S RE:.
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Following the same procedure as above, we find

1
P o exp(—BE;).
Q — the partition function — is defined in terms of the multiplle— it serves merely to normalise the
probability distribution.

The Lagrange parametgrwhich we can identify with IksT serves as the parameter which can
be tuned in order to adjust the expectation value of the grterthe required value. If we relax the
particle number but fix its expectation value, we obtain

1
P = ——exp(—BE; — oN).
Z)
whereg can be identified with-B u, u is the chemical potential.

Let us analyse the canonical partition function a bit furthiehe expectation value of the energy
can be determined as

17}
Using P = exp(—BE;)/Q, we can write the entropy as
S=—ks ZPrInPr = —kBZPr [-INnQ—BE/] = kBInQ—kBB%InQ.

The transformation fron®s to InQ which leads to this type of relation is known as thegendere
transformation
Returning to the derivation of the canonical distributiemdtion, we note that the function we
have maximised can be written as
S—-A-T(E)

where we have use§ R =1 andy, RE;, = (E). Now we write this expression (disregarding the

constantd) as
A E-TS

T T
The quantityA = E — T Sis called the (Helmholtz) free energy. We see that this qiyamas min-
imised as a function d®.. We have:

The Boltzmann distribution is the distribution which mirges the Helmholtz free energy.

3.3 Physical significance of the various statistical quarties in the canonical ensemble

Let us first calculate the energy:

Ee PE
U= (E)—2=€ *
Zr e_BEr
The denominator ensures proper normalisation, in paaidtiensures that the average value of 1 is

equal to 1.
Looking at the above equation, we see that we can \Wriges

U=(E)= —%InZeBEﬁ
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It is useful to define
Qu=Ye P&,
2

Q is called thepartition function Let us relate the quantities we have seen so far to thernaoeigs.
For a system at constavit N andT, we know for the Helmholtz free enerdy= E — T S that

dA=dU —-TdS-SdT= —SdT— PdV+ udN.
From this, we have:

s=_ (22) . p__ (%A} . ,_(2A
9T ' NV "= \oN ™

i

From the first relation, we have:

onersnn (), - ()R

from which we can infer that

A= —ksTInQy.
By taking the temperature derivative @fwe obtain the expression for the specific heat:

ou 5 [(0%A
= (=) =-13(=<) .
& <0T>N,V <0T2>N,V

dA= —SdT— PdV -+ pdN.

(see above), we see that if we keep the volume and the partioder constant, we have

Moreover, from

dA= —PdV,

that is, the change in free energy is completely determinethé work done by the system. The
Hemholtz free energy represents the work which can be domechysed, isothermal system.
We have seen that the probabil®y with which a configuration with energly, occurs, is given
by theBoltzmann factar
g Er/(keT)
' Qv

The entropy can be calculated as

o _ <0A>NV _ 9(ksTINQu)

U
T ot relnOn—

We now replacéJ, which is the expectation value Bf, by the expectation value efkg T In(QnP):

S=kgInQn — ks (IN(QnP)) = —kg (INR) = —kg Z PInPp.

From this relation, it follows that the entropy vanishes etoztemperature (‘third law of thermody-
namics’). Furthermore, this relation has become the stagbint for studying information theory,

where entropy is a measure for the reliability of communicat This is obviously the same entropy
as was introduced in the previous section.
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3.4 Alternative expressions for the partition function

It is very important to realise that, when evaluating the swwerstates 1 we should not confuse
those states with their energies. For a system with a stidésicrete spectrum, the energigsmight
occur with a multiplicity (degeneracy. In that case, when we evaluate the sum over some energy-
dependent quantity, we have

Z - Z g

r |

In fact, the probability of having an energy is given by
gie PE
vigie P&

In practice, the energy is usually continuous or almostinaous. In that casey; is replaced by
thedensity of states(g). This quantity is defined as follows:

Number of quantum states with energy betw&eandE + dE = g(E)dE.

In that case
g(E)e PE

(B)= [® o(E)e PEAE’

3.5 Classical systems

We now show how to evaluate expectation values for a systesistong of interacting point particles.
In the previous chapter it was argued that the sum over thilableaquantum states can be replaced by
a sum over e volume in phase space, provided we divide by the ‘unit phase spdoeneoh® and

by N!'in order to avoid over-counting of indistinguishable cgnfiations obtained from each other by
particle permutation. Therefore we have

H( 3N 3N
Qn = h3NN,/ PR (P NN,

where
p,

2m (q17 . 7q3N)'

For the ideal gas/ = 0. Note that they; are vectors in 3D.

The expression faQy looks quite complicated, but the integral over the momeatsbe evaluated
analytically! The reason is that the exponential can beteritis a product and the integral factorises
into 3N Gaussian integrals:

/ B3P/ (2m) 3N / -BrY/(2m) g pl/ -Br3/(2m) g / e PR/ M3

The integral over one particle then factorises into one @ygone overpy and one ovep,. Now we

use the Gaussian integral result:
© 2 T
/ e Mdx=4/—,
o a
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in order to obtain:

321N .
On= — [M] / e PV giNg,

NI h3

For an ideal gas/ = 0 and we can evaluate the remaining integral: it yi®ds(V is the volume
of the system — do not confuse it with the potential!). Therefthe partition function of the ideal gas
is found as: N

1|, (2rmkgT)E/2)
Qn = NI [V — B ]

3.6 Energy fluctuations in the canonical ensemble: correspalence with the
micro-canonical ensemble

In the canonical ensemble, the energy can take on any pessihle between the ground state and
infinity. The actual probability with which a particular ve of the energy occurs is proportional to

P(E) O g(E)e E/KT.

The prefactorg(E) is the density of states — it is proportional to %E), i.e. the number of mi-
crostates at energly. In general, we find that this quantity is a very strongly @asing function
of the energy, whereas the Boltzmann function (ex/kgT) strongly decreasewvith energy. The
result is that the probability distribution of the energwery sharply peaked around its mean value
U = (E). To show that the energy is indeed sharply peaked arbundge calculate the fluctuation.
From statistics, we know that the width of the distributisrgiven by

(AE) = (E2) — (E)2.

From o
Ee P=
U=(E) =2 "

Zr e_BEr

where, as usual = 1/kg T, we see that

2
aU (Zr Ere_BEr> _ Xr EI'Ze_BEr — —(AE)Z

9B\ y,efE 5, e PE

The quantitydU /9 is equal to

ou 00U |
aB_kBT dT_kBT Cv.

Realising thaCy is an extensive quantity, which scales linearly withwe therefore have:

AU—EzikaUng’wl/\/N.

In the thermodynamic limitN] — o), we see that the relative width becomes very small. Thesgfo
we see that the energy, which is allowed to vary at will, turasto be almost constant. Therefore, we
expect the physics of the system to be almost the same ofttia¢ imicrocanonical ensemble (where
the energyis actually constant).

This result is usually referred to as the ‘equivalence otertdes’.
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3.7 Two theorems — the ‘equipartition’ and the ‘virial’

The analysis of the classical gas in section 3.5 allows usakoutate the expectation value of the
kinetic energyT . This is done as follows.

Inihewn|- (55 +V(R) /(eT)| NPENR
o Jea[- (5 5+VR) /leT) | ¢NPENR

All sums over run from 1 toN; RandP represent all positions and momenta.

Obviously, the contributions to the result from each momemntoordinate of each individual par-
ticle are identical, and they can be evaluated using the $acharisation which led to the evaluation
of the partition function of the ideal gas (the integralsraye coordinate® cancel). We obtain

(T)

o] Bmexp— P/ (2mieT)dp _ 3NkeT

[ expl—p?/(2misT)]dp 2
This result is known as thequipartition theoremit tells us that the kinetic energy for each degree of
freedom iskg T /2. In the book, this theorem is proven more generally.

The second theorem gives us an expression for the preBgtie derivation given here is some-
what different from that of the book). We know that

JA
P=- (a—v>

(see above). Now we replageby —kgT InQn:

(T)

kT L9
P—keT -

First we realise that the integral over the momenta is volimdependent — therefore only the part

Oy = /exp[—U(rl,...,rn)/(kBT)]d3R

is to be considered (note that we call the potential fundtior this is to avoid confusion with the
volume V).
To evaluate the volume-dependence of this object, we waitéhie coordinates; of the particles:

ri=V"3s;

that is, the coordinates are simply rescaled in such a way that they occupy a volumbeoBame
shape as thg, but everything is rescaled to a unit volume. Every configonain a volumeV has a
one-to-one correspondence to a configuration okth&€herefore we can write:

/exp[—u(rl,...,rn)/(kBT)]d3NR:vN/exp[—U(vl/3sl,...,v1/3sN)/(kBT)]d3Ns

where the prefactor arises because of the change of intagrariables.
Now, the derivative with respect ¥ can be evaluated:

0(-:)N B NoLA v—2/3
v WV Qe 3ksT

> s-HiUexp—U (V13 V13s)/ (ke T)]d*NS
|
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Collecting all the terms we obtain

PV 1 N U
TN - 3NkgT <i;r"a_ri>'

We see that fod = 0 we havePV = NkgT, which is well known for the ideal gas.
Very often interaction potentials are modelled as a sum algrarticle pairs:

U(rl,...,rN):_ % _u(|ri—rj|).

i) 1>

In that case, the rightmost term in the virial theorem canebgitten as

N B J— 00
<i;ri | Z_LrJ'> B N(NZ : <rag(l’r)> N N(NZ 1)/0 r$9(’r1—r2\)d3r1d3r27

where we have introduced tipair correlation functiong(r), which gives the probability of finding a
particle pair at separatian= |r, — r1|. The formal definition ofy(r) is

:szexp[—BU (ri,ra,ra,...,rn)]d3rs...d3ry
Qn '

Because the particles are identical, we can take any pa@ad<f 1 and 2. For large separatign
g(r) tends to 1. The virial theorem can be reformulated in ternth@pair correlation function:

g(r)

PV 2N (© . du(r)

1 _ 3
NksT NieT Jo 95 ar

3.8 A system of classical harmonic oscillators
Now we consider a classical system with an Hamiltonian glwen

— A p_i2_|_m_w2q.2N
H2m 2 T

For this system, the partition function can be evaluatedytially as the Hamiltonian is a quadratic
function of both the momenta and the coordinates. The ciounl therefore proceeds analogous to
that for the ideal gas where the Hamiltonian is a quadratiction of the momenta only. The result

for oscillator system is:
1

QN:W’

where we have assumed that the oscillators are distindalesh@he free energy now follows as

A= —-kgTInQy =NkgTIn <%>
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From this we find

“=<a—N> o ()
<3_6> N,T
= (5r) —Nks['“(‘i?l%l}

{a A/T)TV
o(1/T)

From the last equation, we find
Cvy = Nkg =Cp.

The fact thal) = NkgT is in agreement with the equipartition theorem as the Hamidin hagwo
independent quadratic terms (fpand p) instead of only one. It shows that for harmonic oscillators
the energy is equally divided over the potential and thetldrenergies.

Next we consider a collection of quantum harmonic oscitiato the canonical ensemble. This is
simpler to evaluate than the classical case. The statesédtator number are labeled by, hence

On = Z e BhoFi(n+1/2)
{ni}

wherey ;) denotes a sum over all possible values of all number$his partition function factorises
in a way similar to the classical system, and we obtain:

N —Bhw2 \N
_ —Bron+1/2)y _ [ €77
Qn <Ze > (1_e—l3fiw>
From the partition function we obtain, similar to the classicase:
A=NIn [%‘”JrkBTln (1—eﬁﬁw>] .

And, from this,

u=A/N;
P=0;
Bhw _Bhw
ﬁw hw
U= N[ -2 }
And, finally
G = Co = Nlg (B2
P (e —1)”

Interestingly, the quantum harmonic oscillator does n@&yoequipartition: we see that only the
first term in the expression for the energy is in accordandk thiat theorem — the second term gives
a positive deviation from the equipartition result.
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Figure 3.1: The Langevin function. The dashed line is th@lyiaf x/3.

3.9 The statistics of paramagnetism

Consider a system consisting of a set of magnetic momentd) lBament interacts with a magnetic
field H, but the interaction between the moments is neglected. aincise we can consider again a
system of only one magnetic moment and construct the martitinction forN moments by raising
that for a single moment to tHé-th power.

The interaction Hamiltonian is given by

H=—u-H.

Note the difference between the Hamiltonidnand the fieldH. Without loss of generality we can

takeH along thez-direction so that
H = —uH cosd,

whered is the angle between the moment and ztais.
The partition function can now be evaluated:

Q= /eﬁ“HCO&9 sin9dode = 4n%.

We can also calculate the average value of the magnetic momen

T ueBHH oY cos9 singd9dg
’ 21 [TTepuHcosd sindd9 dg

= i |coth(BuH) — BuiH = pL(BUH),

whereL(x) is theLangevin functionlt is shown in figure 3.1.
For high temperatures, that is, for small valuex,dhe Langevin function behaves la&) ~ x/3

(see figure 3.1), so we have

12

M:3kBT

H.

Themagnetic susceptibilitis defined as
oM

X=oH
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therefore has the form c
=7
whereC is the so-callecCurie constant This relation is known as th€urie law of paramagnetism.
This law is found in nature for systems with high values ofdngular momentum quantum number
[, in which case the behaviour of the system approaches cdhé&shaviour.
In the book, the situation of real quantum systems (with Emahlues ofl) is discussed further.

3.10 Thermodynamics of magnetic systems: negative tempetae

The case of paramagnese= 1/2 spins is the easiest example of a quantum magnetic systetimatl
case, the spins assume values eithé or —h/2 when they are measured along an arbitrary axis.
If we apply a magnetic fieltH, there are therefore two possible values of the energy Esethiwo
orientations — we call these energieand—¢. Therefore we immediately find that the partition sum
is given as:

Qu(B) = (&7 +¢)" = [2costipe) .

The fact that the term in brackets can simply be raised td\ttle power is a result of the fact that the
spins do not interact mutually.
In the usual way we obtain the thermodynamic properties fitmgrpartition function:

A= —NkgTIn[2coshe/ksT)];

S— _ <Z_¢>H = Nkg {In[2cosi{Be)] — Betanh(Be)};

U = A+ TS= —NetanhB¢)

M=— <3—3>T = NugtanhBe),

wherepg is the Bohr magneton: the coupling constant between theasyarthe external field, i.e.
&= [,IBH

Finally we have

Cq = <Z—$>H = Nkg(B¢)?/ coslf(Be).

We see that) = —MH, as could be expected. In the next few figures we show the tetype
dependence @b, U, M andCy.

These graphs show several interesting features. The gnieopshes for small temperature as
it should; this shows that for low temperatures nearly alsgre in line with the field, so that the
entropy is low. Also, the energy per spin is abewt which is in agreement with this picture.

When we increase the temperature, more and more spins flipaodethe entropy and energy
increase. There will be a particularly strong increase sdhtropy neakgT = € as in that region
the thermal energy is sufficiently strong for flipping therspover. For high temperatures the spins
assume more or less random orientations, and the entropgippitoach a constant. The graph of the
magnetisation is also easily explained now. The specifit$teaws a maximum nedg T = ¢ for the
reason just explained.
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Figure 3.2: Entropy versus temperature

kBT/E

Figure 3.3: Energy versus temperature

A striking feature of the energy graph is that it does not epph its maximum value, which is
reached when all spins would bantiparallel to the field. In fact, when the energy is positive, the
entropy will decreasewith energy. This can be used in an experimental technigliedcaagnetic
cooling In this technique, a strong magnetic field is suddenly s®abiin order to bring the spins
in a configuration where the majority is antiparallel to theldi In that case, the temperature is
negative as the entropy decreases with energy afitl & dS/JdE. This is not in contradiction with
the laws of thermodynamics, as the system is far from equilf. In order to reach equilibrium,
the temperature will return to positive values, and it tfamehas to pass through absolute zero. The
system is therefore extremely cold for some time.
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Figure 3.4: Magnetisation versus temperature

0.5

kBT/E

Figure 3.5: Specific heat versus temperature



4
The grand canonical ensemble

4.1 Equilibrium between a system and a particle-energy reseoir

We derive the grand canonical distribution function (dgnginction) in a way analogous to that of
the canonical ensemble. We consider again a large, isadggtdm in which we define a subsystem,
which can exchange not only energy, but also particles vighremainder of the large system (the
remainder is again called a bath). Now we consider a statthe subsystem consisting f particles
and an energ¥s. Just as in the derivation of the canonical ensemble, wethatehe probability of
occurrence of this state is proportional to the number o$ipdes states of the bath:

PsOQ(E—Es,N—N).

Writing Q = exp(S/kg) and realising that

oS 1
E T
oS U
N T

we obtain
PI’S 0 eS(E*ESnN*Nr)/kB 0 e*ﬁESJFBIlNr.

Figure 4.1: The grand canonical ensemble. The system umdsideration (dashed square) can exchange
energy and particles with its surroundings.

23
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We see that the probability distribution is that of the cacalnensemble multiplied by an extra factor
exp(BuN) and summed oveX. The required normalisation factor is

meﬁu'\I Ee PEB =

The quantity% is called thegrand canonicabr grand partition function

4.2 Formal derivation of the grand canonical ensemble

Using the principle of maximum entropy, we can again detiegrobability for the grand canonical
ensemble. We do this by requiring that #aeectatiorvalues ofE andN are given. Hence we must

maximise the entropy
@%Zm )Inpr(N

under the condition that

> ¥ pNE(N) = (E) =V

r

is given and that
SNY PN =
4

This then leads to a Lagrange function
F=S-2A % Z pr(N) — ke % Z Pr(N)E(N) —kgBu % N Z Pr(N)
r r r
Taking the derivative with respect {» (N) leads to

—kgInpr(N) —ks — A —kgBE;(N) + kgBuN =0,

leading to the distribution
e BE:r(N)+BuN
SNy e BE(N)+BuN’

as found in the previous section. The denominator in theehgstession is called thgrand canonical

partition function
¥ % g BE(N)+BuN
2

pr(N) =

4.3 Physical significance of the various statistical quarties

We can relate the thermodynamic quantities using the grandrgcal distribution function. First of
all, we note that the grand partition function can be writisn

= S eBINQY(N,V, T
ngo On( )

whereQn(N,V, T) is the canonical partition function, which is related to Helmholtz free energp

as
Qu=g kT,
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The grand canoncial partition function can thus be written a

P éoeﬁwmx

Just as in the case of the energy in the canonical ensemelsyithmana®(“N—A) will be very sharply
peaked near the equilibrium valteof N, so that we may replace the sum by the summand at its peak
value. In this way we find

keTINZ =uN—-A=uN-U+TS

Using the Euler relation from thermodynamics,
U=ST-PV+uN,

we find
ksTInZ =PV =kgTq

Note that we have been a bit sloppy in replacing the sum Bvay its maximum value — we should
have included a width here. However, this only leads to artimdcconstant in the relation between
UN — A andksT In 2, which can be fixed by noting that fof = 0, the right hand side should vanish,
and the result obtained turns out to be correct.

Let us now calculate the average valueNofising the density function:

N _ SNoNeHler Vel | (9q(p,V.T)
Y=o &PHNe AkeT ou V,T‘

Instead of the chemical potentigl often the parameter= exp( ) is used. The parameteiis
called thefugacity The energy can be obtained as

dq(ZN,T)> '
zV

T 2
U=keT < oT

]

Note that in the derivative with respectq the fugacityz = exp(u/kgT) is kept constant (though it
depends ofT).
The relations with thermodynamic quantities can most gés&lformulated as

N — <0kBTIn,§'f>
V.T

ou
(akBTlnff>
P: s —
oV T
(ammgx)
s=(——=
oT y

4.4 Examples

We first calculate the grand canonical partition functionhef ideal gas. We start from the canonical
partition function, which has the form

N
Qu(NV,T) =V—<

ke T \
NI ‘

h
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Now an/2
VN (2rmksT) > &N
uN S _
¥ = Nzeﬁ N NZON! exp(é)
with 3/2
g;Vz<2"T2K3T> =VzA 3

The quantityA = \/h?2/(2rmmksT) is called thede Broglie wavelength it depends off only. From
this expression for the grand canonical partition functitve thermodynamic quantities can easily be
evaluated using the relations given in the previous section

ZkeT
P:—A3

zvV
N:F

dA—3

= 2VIgT2

=VieT 57

/\73

S:—NkBInz+zVI13[TddT +/\—3]

The first two of these relations can be combined into the wsdwn equation of state
PV = NkgT.

Interestingly, this relation does not depend/arso it holds for othenincoupledsystems too, such as
a system consisting of indistinguishable harmonic ogoilta

In a solid, consisting of atoms vibrating around their d&milim position, the oscillators ate-
calised This has two important implications: first of all, they aiistohguishable, and, secondly, the
partition function of one such oscillator does not dependhenvolume. This leads to the following
form of the patrtition function:

QN(N7V7T) - (Ql(T))N .
Writing

this leads straightfordly to
z= %ZN T 1-zg(T)’

We see thazg(T) must be smaller than 1 in order for this sum to converge. Frarpartition sum
the thermodynamic quantities can again be derived:

_ze(T)
1-2¢(T)’
_ ZeT2(T).
1-z9(T) "’
A=NksTInz+ksTIn[1—2zp(T)];
S=—Nkglnz—kgIn [1—Z¢(T)]+Z;%%Z,((_I_T)).
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Note that calculating the pressure for this system is naiseh as the grand partition function is
independent of the volume (see Eq. (16) of Pathria, whichsloauld forget as soon as possible).
From the second of these equations, we see that

N

for largeN. This renders the other relations a bit simpler:
U/N=ksT?¢/(T)/o(T);
A/N=—ksgTIne(T);
S/(Nkg) =Ing(T)+T¢(T)/p(T).
For quantum harmonic oscillators, we have
—Bliw/2
pm) = ez €008 1
4 1-ePhw  2sinh(Bhw/2
For classical harmonic oscillators we have, on the othed han

¢ = (Bhw) ™.
We now use these results in order to analyse the solid-vagugilibrium. Solid and vapour are
in equilibrium when their chemical potentials are equal: the gas, we have
_ NgA3
7

with A the de Broglie wavelength//2rmmigT.
For the solid, which we describe a system composed of mampartent oscillators, we have

z=1/9(T).
The equilibrium is achieved for a gas density
N 1
\ o(T)
For low vapour density and high enough temperature, we fibveréind
Ng 1
PV T~ AsgmeT

which follows immediately from the ideal gas equation ofesta
For 3D harmonic oscillators, we have

@(T) = [2sinh(iw/2ksT)] 2.
We have however not taken into account the fact that the gradrthe equilibrium point of the har-
monic oscillator describing an atomlwver than the energy of a gas atom: after all, the atom is bound
to the solid, and we need a certain amount of energy to remdra@m there and move it to the gas.
As a result, we must include a factor é8z) in the productp(T)A3. We then arrive at an expression
for the vapour pressure
2rmmkg T

P=kgT <7h2

We see that two parameters enter this equation: the endfgyedicec and the frequencw. These

two parameters precisely determine shape and offset ofatabpla’s defining the energy felt by an
atom in the solid.

3/2
) [2sinh(fiw/ 2k )2 e Pe.
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Formulation of Quantum Statistics

Up to now, we have mainly considered classical statisticathmnics. Of course, sometimes we
needed to take quantum mechanics into account in order #® Wwall-behaved partition functions,
where ‘well-behaved’ means in this context that entropy @rek) energies scale linearly with,
and also that integrals over phase space are dimensioRessmber however that the density func-
tions we have considered so far were essenti@d#gsical we have derived Liouville’s theorem from
the classical (Hamilton) equations of motion, and inferiredn that theorem that in equilibrium the
density function depends on the Hamiltonian orgyg, p) = p[H (g, p)].

Now we shall consider statistical mechanics more strictlthie context of quantum mechanics.
The analog of the density function now becomesdbasity operatar This operator can be useful
when we do not know the actual state of the system, but onh\sé¢hef possible states which the
system can be in, together with the probability for the syste be in any of those states. The density
operator is then

p=> pilwn) (il

wherep; is the normalised probability for the system to be in stgke (3 pi = 1).
From the time-dependent Schrodinger equation

9w _
S =HIW)
and its Hermitian conjugate
9yl
i = (WA

which hold forany state|), we see that

—iny (gl )l o) (5 wil) | =
5

pi [(F 1)) (] — 1) ((w|H)] = Hp - pA.

From now on, we shall leave the hats from operators unledsigsion may arise.
We see that we have an equation quite analogous to Liowvthe'orem:

p=- [H pl.

This is called theguantum Liouville theoremJust as in the classical case, we note that in equilibrium
p must vanish. In case we have a stationary Hamiltonian (@e&xplicit time dependence), we have

p=p(H).

28
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We recall here that for any operat@r the expectation value is easily evaluated as

_ TrpG
(©) = Trp

Here, Tr is thetrace operator. For any orthonormal basgs), it is evaluated as
TrA="5 (@l|Alm).
n

In a finite-dimensional Hilbert space, the basis is finitel #e trace boils down to adding the diagonal
elements of the matrix representation of the operator befogd.

Suppose we have an orthonormal basisggethich forms a basis in our Hilbert space, Then we
can expres® with respect to this basis:

Prm= (¢ [P] @) -

This is the matrix representation. In a finite-dimensiondbétt space, we therefore speak of the
density matrix rather than an operator. In case we have a statewvhich can be expressed in this
basis as

W)= 3 anlt) lgn).

we have
p=[y) (Y.
The density matrix then reads
Pom = an(t)an(t).

In a many-particle system, the physical wavefunctions f@a@dinatesr1,...,rn. Also, spin
degrees of freedom might be included. The wavefunction imegd can therefore be written as
Y(xa,...,Xn), Wherex is supposed to include all degrees of freedom of a singlécfrartNow sup-
pose we have a complete set of basis st@tes) (n might assume an infinite number of values, even
continuum) for a single particle. Then a complete set okstéir a system consisting bf particles
is

wn17«<<7nN (le o 7XN) = (Xl)q*hz (XZ) - Ghy (XN)'

A general state of the system is a linear combination of thesés states. In general, such a state is
entangled.

5.1 Statistics of the various ensembles
Just as in the classical case, the density operator of auuasystem is given as
p=06[H—EI

wherel is the unit operator. In practice, we do not rigorously innpémt a delta-function, but instead,
count the states in a narrow inter@, E +AE). We can, instead of using the delta-function, also use
the theta-function which is constant for all energies sendaliankE, and zero for energies aboke As
mentioned in the first chapter, it does not matter which sgmeation we choose because, for large
particle numbers, the dominant contributions to the entampme from energies very closeoin the
latter representation.
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The entropy is given as
S=kgInT,

wherel is the number of states with energy in a narrow béadE + AE). In a basis of eigenstates
of the Hamiltonian, the density matrix becomes diagonal:

1/r for En < E;
Prn=
0 for E, > E.

In the canonical ensemble, we have a density operator
p=Ce P,
If we express this operator with respect to an energy-bteisjs, an orthonormal basis of eigenfunc-
tions of the Hamiltonian with eigenvalués;:
Pmn=Ce PEn g,
From this, the normalisation is easily found as
1/C=Tre P = S e PE = Qu(T),
m
just as in the classical case.

The grand canonical ensemble is formulated usingotiréicle number operatofi in addition to
the Hamiltonian:

p =Ce PHHBUA,
In most cases, the particle number operator commutes wathHdmiltonian. The grand canonical
partition function is then found again as

1/C=2(uV,T)= %eﬁﬂN S e s = %eﬁ“NQN(T).

5.2 Examples

5.2.1 Electron in a magnetic field

In order to practice the quantum formulation a bit, we calteiproperties for some systems we have
considered before in the classical context.

The first example is that of an electron in a magnetic field. Wesier only the interaction of the
magnetic moment with the magnetic field, and not the orbitglreles of freedom (i.e. the motion of
the electron, perhaps in some potential). The calculasanast conveniently done in the canonical
ensemble. Considering only a single spin, we have

H=—pg(o-B).

We work in the representation in whiah is diagonal. Then we can use the fact that the exponential
of a diagonal operator is again a diagonal operator with #p@mentials of its eigenvalues on the
diagonal:

p= Tr e BBlsO: - eBusB | e—BusB 0 e BusB

g PBHsO: 1 ( eBusB 0 >
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Then we obtain for the average expectation value,of

eBUBB_e*ﬁIJBB
<Uz> =Tr (PUz) = —QBIJBB-Fe*ﬁIJBB = tanf(B/JBB).

A comparison with sections 3.9 and 3.10 shows that thesé#tsese correct.

5.2.2 Free particle in a box

We now consider a free particle in a box, governed by the Haniédn

_5 P
H=3 o

Inside the cubic box of sizein which the particles move, the potential is zero; outsideassume pe-
riodic boundary conditions. The eigenfunctions which ampliant with these boundary conditions
are

L
with k = 2m1/L(ny,ny,n;). The corresponding energies are

1 3/2
w(r) _ <_> ei(kxx-&-kyy-i-kzz)7

hk?
®=2m

We must choose a basis of the Hilbert space in order to eealhattrace. First we choose as a basis
the eigenfunctions which we denote|&$:

<k‘e*BH

k’> _ efiiZkZ/(ZmI@T)a(k —K),

so that the partition function becomes

Qr="Tr (efﬁH) = Z <k ‘e*H/("BT)

k’> _ Zefﬁhzkz/(Zm) ~

3/2
- [y (M .
(2m)3 2mBh?

That the transition from the sum to the integral requires smaefactor L3/(2m)3 can be seen as
follows. On the grid ok-values, the volume occupied bkapoint is (271/L)3. The sum runs over the
points in a certain volume. This is then equal to that voluive (d3k) divided by the volume per
point.

It is instructive to derive the same partition function wgther-representation:

(e

1 e (r!
r/> -5 Zék(r 1) g~ 2K/ (2mig T)

1 i ’ 212
~ d3k ék~(r —r)e—h ke/(2mkgT)
(271)3/

— <Tr;;hz>3/2exp<—2[$iz Ir—r' 2) :
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The Fourier integral will be discussed in the exercises. niyshis, the partition function can be

evaluated as "
Ql(T):/<r‘e‘BH‘r>d3r:V (T?;;g)

which is obviously the same as the one found above.

The quantity(r |p|r) which occurs in these expressions (remengberexp(—H)) represents the
probability density of finding the particle at positionBecause we have periodic boundary conditions,
this must not depend on as we have found. On the other hand, the expressigmr’) gives the
probability that a particle suddenly moves frorto r’ as a result of a thermal fluctuation.

Let us evaluate the expectation value of the energy. Thisdstraasily evaluated in thie-
representation:

_Tr(He Pty 1 v %2

3
Hy— \"'% ) = ¥V [ R me/emeT)§B8k — kT
H) Tr(ePH)  Qu(2m)3 om © ZkB ’

that is, equipartition is satisfied. We could also use

_dInTr (e M)

()=S0

which leads to the same result.
One might ask how general the equipartition theorem is. We Baen in the case of the quantum
harmonic oscillator (see exercises and the next sectiam}hle equipartition theorem does no longer

hold forkg T ~ . In order to check whether this theorem still holds for theekic energy only, we

must evaluate
Tr [Te PT+V)]

)= e pmv -

The contributions from exp-BV) in numerator and denominator do no longer cancel, as a refsult
the fact thafT andV do not commute. Therefore, the equipartition theorem ngédotholds in the
quantum case.

5.3 Systems composed of indistinguishable particles

To fix the ideas, we start by considering the noninteractamgc Then, the Hamiltonian has the form

whereH,, only acts on the coordinates of particleThe coordinates of the particles are denoted by

q:(qlaq27"‘a)a

whereq, denotes the coordinate(s) of particle The eigenstates of the Hamiltonian then have the

form
N

Ye(q) = Ellun(Qn)>

where
HnUn — gnUn.
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The total energy is given as
N

E=Y &
nzl "
Note thatn denotes a particle, not a particular energy level. Now ssipploat the particles are identical
—in that case, the form of the Hamiltonians, and their spestiould be identical. Now suppose that
we haveN particles with energ¥. As each of the particles occupues energies of the sameasmect
there might be more than one patrticle in the one state witlggrae We must have:

N:Zni,
E:Zsi.

The states can then be written as
n 17
(@) = [ uz(dm) [ t2(tm)---
m=1 m=1

Now, if the particles arédentical we know that a permutation of them leaves the total Harridion
invariant. If this is the case, the Hamiltonian commutesliie permutation operator:

PH=HP.

If an operator commutes with the Hamiltonian, it must be fiego construct the eigenstates of
the Hamiltonian in such a way, that they are simultaneouigjgrestates of that operator. You might
recall from your mathematics course that any permutation mwritten as a product of particle
exchanges (a particle exchange means that we exchangeckepaair, i, j, say). Let us calR, ; a
particle exchange for the pairj. We obviously havePﬁ- = 1. Then also the eigenvaludsof R ;
should satisf)ﬂ\2 = 1. As we furthermore know that, sin€; is Hermitian,A is real, we must have
A = +1. We see that the particle wavefunctions are either synenetder particle exchanga & 1)

of antisymmetric § = —1). It turns out that for a particular kind of particles, wesbaither one or
the other possiblity. Particles whose wavefunction is swtmim with respect to exchange, are called
bosonsthose which have antisymmetric wavefunctions are cdéeahions

The fact that any permutation operator can be written as dugtoof exchanges, leads to the
conclusion that always

Pye = £yE.
This notion directly leads to the conclusion that the mitates are invariant with respect to any
permutation of the particles. Therefore, the numbgrsvhich tell us how many particles can be
found in state, define a microstate uniquely, and additional correctiariois for proper counting
should not be included in sums over the states.

Even if the particles interact, we can use the same repgemtialthough they; are no longer
eigenstates of single-particle Hamiltonians). The reashy interaction does not matter is that the
products of single particle states form a basis of the Hilbpace for many particles, whether they
interact or not.

Finally we note that, for fermions, we can construct wavefioms constructed from single-
particle states); as follows:

Y(q) = NI

UI('ql) UI('(lz) UI(dN)
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where the vertical bark. .| denote a determinant. This wavefunction is calleslater determinant
The prefactor follows automatically from the normalisaticondition (theu; are considered to be
normalised). In the case of Bosons, we have a similar expressut the minus-signs in evaluating
the determinant all turn into plus-signs.

Another way of writing the wavefunction is

W(d,...,an) = Z5P]Pu(q1)uj(<12)---ul(qN%

wherey p denotes a sum oveltl possiblepermutationsd = 1 for bosons and-1 for fermions andP]

is the sign of the permutation. The sign of the permutatiateigrmined as the number of exchange
operations it is composed of. Note that the permutation aiperacts on the@rguments g of the
wavefunctions only, not on the labelsj,.... Note that this state is not normalised in the case of
bosons:

(Wlg) =m!ngt- -

wheren; etcetera are the occupation numbers of the different statesee that this factor occurs
indeed in the normalisation, look at a system consistingvofliosons, both in the same state

= %W [u(Gr)u() + U(eR)u(Gn)] = V2u(qe)u(cp).

We see that the norm of this state is=2R2. For fermions we do not have this problem, as no two
particles can be in the same state.

5.4 The density matrix and the partition function of a systemof free particles

We know the wavefunctions already for a single particle &astion 5.3):

1
Uk(Q):We'kr

With the above definition of a many-particle basis functime, must therefore evaluate

<k1,...,kN |exp(—BH)|k’1,k{\|>

where the statelk/, ... ky) are (anti)symmetrised states.
In order to evaluate this equation we note the following:

¢ On the left hand side and on the right hand side, we have ctualim over all permutations.

e For a particular permutation fatifferentk; on the left hand side, the operator éxjBH) in the
middle forces the states on the right hand side to correspoacdne-to-one fashion to those on
the left hand side.

e The normalising prefactors/1/N! on the left and right hand side yield a factofN!.

Combining all these considerations, we see that

N
(K1, . kn [eXp(—BH)| K], ... kiy) = e+ +K)/(2mieT) rlé(ki — k)
i=
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where the normalisation factag!n,! ... of the Slater determinant has already be divided out in order
to work with normalised states. This factor amounts to 1likahre different.

When taking the trace, we must sum over a skate..,ky. Note that this sum must include a
restriction such that for the set of permutations of the twamumberk,...,ky only onemember
is chosen, otherwise we are overcounting. But we can relgpsach restriction provided we divide
by the number of possible permutations "

ny!-nol--- ’
Therefore we have as the final result
1 L3N

N = i 2 {/exp[—hzkz/(Zmlqu)] d3k}N - (%) N

We see that we have obtained the correct expression of tlisgrafunction. Note that we have been
sloppy in this calculation: if alk would be different, the result would be correct. But by iméging
over all possile combinationk,,...,ky, we have included the cases where thie are the same.
If there is such overlap, theNBdimensional integral no longer factorises idothree-dimensional
integrals. It turns out that the correction turns out to by enall wherv/3 > A: then for the vast
majority of configurations, no twh's overlap.

Obviously, we could have evaluated this partition functiging the coordinater) basis rather
than thek-basis. The book uses this representation, but the calmulat more difficult. We shall
work out here the example of a two-particle system. We firatuaite

~BH 1% g —BI2(G+3)/(2m) By, o3
<r1,r2‘e ‘rl,r2> :5(2—7_[)6/{1icos[(k1—k2)-(r1—r2)]}e 1772 d°k,d>ks.

In this expression, the first term is the one where the pagiate both on the left and right hand side
of the matrix element in the same state (both eithepr k), and the second term corresponds to
different states on the left and right hand side of the matié&nent — thet sign is for bosons, the

for fermions. Evaluating the integrals we obtain

_ 1
<r1,r2 ‘e BH‘rl,r2> =578 [1i exp(—2n(r12//\)2)] .
Taking the trace means that we must integrate ovendr ,:

Q= % / [1+exp(—2m(r12/N)?)] d¥ridPrp = % (%)2 {u 23—1/2 (/\73)} .

We see that the result reduces to the correct partition faméor the case wherA < VY3 = L. The
probability density for the particles to beratandr, can be considered for the boson- end fermi case.
We define thestatistical potential ¥(r) as

e,Bvs(rlz) = p(l’]_, I’2).

The statistical potential is shown in figure 5.1. We see thafotential has the correct behaviour in
the sense that it prevents fermi particles to come closefaaadirs bose particles to come close.

It is instructive to repeat the calculation for the two-pEet partition function in terms of thk
basis. For bosons, we have a possible state for each comobikatk,. In this case, fok; # k, the

wavefunction is: 1
Y= 7 (Wi, (D)W, (2) + e, (2) e, (1)) -
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r/N

Figure 5.1: Statistical two-particle potential for boseligline) and fermi (dashed line) systems.

For k1 = ko, the wavefunction is:

Y= L»Ukl(l) L/»’kl(z)-

Note that the two expressions differ by a factde.
For fermions, we have a possible state only wkeg: k;:

= \% (Y (D () — Wi (2) oy (1))

If we calculate the partition function, we must integrateidk;, andks,, but we see that we must
single out the contributions fde; = k5. In general, for an operat@rwhich isdiagonalin phase space

we have

1/ V \? s @ 1V 3
A= (W) /A(kl,kz)d ked kziEW/A(k,k)d K

For the trace, this results in

g 1V VP /2mkeT\° 1 V. mmigT\¥%
re™ =5\ zne ) T2\ w -

1/ V 22nmlq3T31i1/\3
2(ems) (7))
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The theory of simple gases

In the last chapter we have laid the foundations for quantiatisical mechanics. Let us summarise
the most important results here. A quantum state of a calledf identical particles is a fully anti-
symmetric (for fermions) or symmetric (bosons) many-péatstate. Such a state can be constructed
from single-particle states by a Slater determinant (inchee of fermions) or a symmetrised linear
combination of products of single-particle states (bokamsthis chapter we shall work out further the
case of non-interacting particles for which the partitiandtions usually factorise, thereby rendering
a full analytic solution feasible.

6.1 Anideal gas in other quantum-mechanical ensembles — aggation numbers

Quantum states for ideal gases arly characterised by specifyifgow many particles there are in
each available stateFrom this it follows that, if we have a set of single-pagicjuantum stateis),
the many-particle state is specified by the numimgrsf particles in each such state. If we haNe
particles, we must have

Z ni = N.

|

If the single-particle states are eigenstates of the sipaficle Hamiltonian with energies, we can
evaluate the energy of the system to be
E= Ni&.
2

The number of single-particle products in such a state is

N!
ng!-npt--.”

In any sum over all the eigenstates, each(sgn,, ...) should be countednly once
In Maxwell-Boltzmann counting, we sum over all possible figurations fordistinguishablepar-
ticles and then divide bN! Therefore, the effective weight with which we take the cgufation

(n1,ng,...) into account is
1

n!-nol--.
instead of the correct factogr= 1 which is taken into account in Bose-Einstein counting. fare
equivalent only if each state contains at most one partigdiéch occurs at high enough temperature
and large enouh volume.
The canonical partition function can be evaluated as

g(ng,ny,...)

QIN,T) = Z/g(nl,nz,.,_)e—ﬁziemi
{ni}

37
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Wherez’{ni} denotes a sum over all configuratiofs, ny,...) with $;n, = N. Because of this last
restriction, it is not easy to evaluate this partition fioet Note that for Bose-Einstein (BE) and
Fermi-Dirac (FD) statistics, the weight factgr= 1, and that for Maxwell-Boltzman statistics=
1/(n1! -nz!---).

In order to proceed, we look at the grand canonical partitimction, where the restrictiofy; nj =
N does not come into play:

Zp,T)= (z\g(nl, ny,.. _)eﬁzi(U*Si)ni.
n

The nice property of this partition function is that it fads®s into a product of sums ovay. In the
case of BE statistics:

Z(u,T)= i Bu—e)m i Blu—e)nz -

n =0 n,=0

Each of the factors is a geometric series which can be eealeatalytically:

& 1
(H—en_ _ —
n;eﬁ 1— eB(u—¢)

Note, however, that in order for the grand canonical partifunction to be well-defined, it is neces-
sary thatu < &, whereg is the ground state energy.
For FD statistics, the situation is even simpler: each oftthanly assumes the values 0 or 1.

1
Z)eﬁ(u—dn — 14+ P8,

n=

For Maxwell-Boltzmann counting, with/In;!-ny!---), the factors are identified as the power series
expansions of the exponential function:

in_lleﬁw—e)n — exp [eﬁw—a] _
2l

It is also possible to evaluate the average occupationsedktrels. For Bose-Einstein statistics,

we obtain:
_ 2:101:0 eBlu—e)n . . Z;"izo nieﬁ(“*ﬂ)ni o

() = Z;olzoeﬁ(“_gl)nl"'Zﬁ:oeﬁ(“_mn‘ o
All factors in the numerator and the denominator are idahtexcept for thé-th factor, which yields:

o bl
(ni) = Zn.oo_o I T
znizoefﬂl PN,

This can be evaluated as

(n) = 9 { ! } _ 1
Y 0B(u—s) 1—eBu-&)|  eBla—m _1°

This is the famous Bose—Einstein distribution function.
For Fermi-Dirac statistics, we obtain

2 1
(ni) = B 5 In [1+eﬁ(“ )] = FETT
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Figure 6.1: Bose—Einstein, Fermi—Dirac and Maxwell-Bolénn distribution functions.

Finally, for Maxwell-Boltzmann counting, we have, not igaurprisingly:

(ni) = In [exp(eﬁ(“—&))] _ Blu—e)

__9
IB(H—&)
In figure 6.1 we show the different distribution functions.

6.2 Examples: gaseous systems composed of molecules witkelinal motion

Consider a gas consisting of molecules with internal degoé&reedom. These can include electronic
or nuclear spin, and vibrational or rotational motions @ tluclei. We neglect the interaction between
different molecules, which is justified in the gas phase wiheir mutual separations are on average
very large. We furthermore suppose that the thermal wag#tea much smaller than the system size,
so that Boltzmann counting is justified.

In the usual way, we may factorise the partition functiom ipartition functions of the individual
molecules:

QIN,T.V) = = [Q(LT.V)"

N!
where the single-molecule partition function has the form:
2rmmks T 32
Q(LTV)=V (T) j(T).

To obtain this expression, it is necessary to split up theadegof freedom: we consider the centre
of mass coordinates separately from the internal degrefeeaafom. The centre of mass coordinates
of the molecules yield the free, ideal gas partition funttiwhereas the internal degrees of freedom
generate the internal, molecular partition functigm ):

(1) =y g #/eT.
>0

The factorg; is the multiplicity (degeneracy) of the stateWe do not have to include the counting
factor 1/m! sincen; < 1 in the regime considered.
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For these systems,
p__9A _NkT
ov \Y
Note thatj(T) does not contribute to the pressure, as does not depend woltinee (which is natural,
sincej(T) includes onlyinternal degrees of freedom). The energy can be evaluated as

3
E= ENkBT‘FEint,

where
Eint = NkBTZiIn i(T)
" oT ‘
Also the specific heat at constant volume can be evaluated as

dEint
aT -’

3
CVZENkB—i-

UsingPV = Nkg T, we obtain for the specific heat at constant pressure:

_(IE+PV)\ 5 dEny
P () e T

where we have again used the fact that the internal degrdesedibm do not depend an
Other quantities which can be evaluated are the chemicahpat and the entropy:

. a .\,
S:SdeaI+NkB<|nl+Td—T|nJ>,

H = Hideal — I(BT In J

We see thaj always influences the values of these two quantities, whahese of the energy and of
the specific heat are determined only by the temperaturerdigmce of.
Let us, as en example, consider a monatomic gas for whichi¢k&r@sor the nuclei have spin
S. We have
j=2S+1.

The spin does not influence the energy (if we neglect the hfype structure) and only the chemical
potential and entropy are affected by the spin.

If on the other hand, the electron has orbital angular moumaiitt addition to its spin, then there is
fine structure splitting. From quantum mechanics, we knat e fine structure energy correction is
determined by the value of the quantum numhewrhich is the value of the total angular momentum.
Calling the energy levels;, we have

j= Z(ZJ +1)ePa,

Diatomic molecules consist of two atoms. We then have amititi degrees of freedom: two
related to rotations and one to vibrations. We first considervibrations along the axis connecting
the nuclei. As the atomic bonds are relatively stiff, theresponding frequency is high: in fact the
distance between the vibrational levelsy, is of the order of 1®K, which means that these vibrations
can only be seen for temperatures of that order. We havedsimaluated the partition function of
the harmonic oscillator. It turned out that for> hw the system satisfies equipartition, leading to
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a constant specific heat, and that the specific heat for sprapédratures decays to zero. The full

behaviour is given by
hw

ef
Cv= N@(Bﬁw)mc

The temperaturé.w/kg is often denoted a,: it is the temperature where the vibrations become
noticeable in the specific heat.

A diatomic molecule can be considered as a ‘rigid’ rotatowé neglect the coupling between
vibrations and rotations. The quantum mechanical enefgiesrigid rotator are given as

_RA(+1)
2

wherel is the moment of inertia perpendicular to the molecular.aRigain we can define the tem-
perature where rotations become important. This is

E

hZ
a_m@‘

This temperature is in general much lower than the vibratitemperature. The partition function for
the rotations is

00

ir=Y (21 +1)exp[—61(1+1)/T].
1=0

For low temperatures, only the first few terms will contrisignificantly to the partition function:
jr(low T) ~ 14 3e20/T 4 5 66/T ...

For high temperatures, the sum can be replaced by an integrat

jrhighT) = [ (21+1)expl—1(1 + 1)/T]dl = g.
T
This results in a contributioN kg to the specific heat.
In summary we can say that

At all temperatures, we see the effect of spin degeneradyeiemtropy and the chemical potential.

For low temperatures, fine structure effects may becomeewtiie in the specific heat.

For high enough temperatures, first the rotational freeddihaffect the specific heat.

For even higher temperatures, the vibrational degreegetim will become noticeable.
If we disregard fine structure, we see thatTox 6, 8,, we have
3
CV == ENka forT < 9r76V7
5
Cy = ENkB’ for 6, < ks T < 6,

=
Cy = ENkB, forT > 6,,86,.
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Examples of quantum statistics

Quantum statistics involves either Bose—Einstein or Ferinac counting in the evaluation of phys-
ical quantities. Examples have been covered extensivdlyeirstatistical physics course of the third
year (G. Bauer). Therefore, we restrict ourselves here tieaeview of the major applications.

7.1 Thermodynamics of free quantum gases

As we have seen in the exercises, we can write

NA® 1 3 1
/d X ———,
V32 e¢—Bu+1

where the+ sign corresponds to Fermi, and thesign to Bose statistics. Furthermore

In the classical limit for whichu is strongly negative, this leads to

— B
—ebfH 23/292 My

This equation shows that when we keep the density fixed, gliroregativeu corresponds to high
temperatures.
For the pressure, we have the expression

%—VI R 3/2/d3xln (1eehm),

where the+ sign is for fermions, and the sign for bosons. In the classical limé;*PH < 1, this
yields, after expanding to second order in gp):

P 1 3 2 3 _ox2 1
EZWUd xexeﬁ“ﬂpezﬁ“/d X € ]:F<eﬁ“ ﬁezﬂ“>

If we now substitutee®# by the expansion obtained above, we see that
P—nkgT (142752m%)

The first term is the classical results; the second term ghesguantum correction. For Fermions we
have the plus-sign, which indicates that the particles seempel each other as a result of the Pauli
principle. For Bosons (minus-sign) the pressure becomedlesnindicating an effective attraction.

42
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Finally we can derive the entropy:

S:_<M> :V<£> _
oT Y oT ) v

Now we copy the lowest order term in the expansion found alfmviine pressur®:

sV (a2 (52) ]
gt

Combining this with the classical relati@i* = nA® gives
S=Nkg B +In()\3/n)} ,
which, forA = \/h?/(2rmmkgT) andE /N = 3kgT /2 can be written in the form:

3 E vV 3 4mm
=Nkg |=In=+In=+=In{ == 2|.
S kB|:2nN+nN+2n<3h2>+5/:|
This is again the Sackur—Tetrode formula for the entropyrofdaal gas. The quantum corrections
can be evaluated analogous to the case of the pressure. stiieise

1
S= + ——_A3Nkg.
SClass 8\/2 kB

7.2 Bose-Einstein systems

7.2.1 Planck distribution

Take an empty box in contact with a reservoir of temperafireThe reservoir can interact with
the box by emitting electromagnetic (EM) field waves into ibh quantum language we say that
photons can travel into the box. The photons carry enérgywith w = clk|. Whichk vectors are
accessible is determined by the shape of the box. If we takibaaf size. x L x L, thek vectors are
2m/L(ny, ny,nz) with N; integer. From the quantum theory of the elactromagnetid,fiefollows that
the photons are created and annihilated freely, so tha thenber cannot be controlled by a chemical
potential. Creating a new photon in particular does notlirerany cost except for its energy, go= 0.
Therefore, the number of modes available at frequenéy given by

w?dw

32

In this expression, the factor of 2 arises from the fact thatd are two transverse modes (only trans-
verse modes are allowed by Maxwell's equations), and we Haiged the volume of the spherical
shell with thicknesslk in k-space by the volumgrt/L)3 of eachk-point, and usedy = ck. Now we
use the fact that the photons are bosons (they are spinitlgsiiand we have for the energy radiated
at frequencies betwean andw + dw:

N(k)dk= 2-4nk?dkL®/(2m)® =V

B widw
m2c3 giw/keT _ 1"

where the BE distribution is recognised, multiplied by thermgy of the mode and the occupancy.

U(w)dw = n(w)hwdw =
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Figure 7.1: The Bose—Einstein functign

7.2.2 Bose-Einstein condensation

The BE distribution is well defined only for values agfbelow the ground state energy — otherwise,
the occupancy becomes negative. Let us, for such an acteptabvaluate the number of particles
as a function ofu:

N 1 v / 1
- Z B/ am—p) _ 1 (2m)3 ) B/ @m—p) _

Ark*dk.
1
Reparametrisingi’k? /(2mks T), we obtain for the particle density

SERLIY L. S
—7_[/0 o B _1 x=g(Bu).

Note that the integral depends B only. In function 7.1, we plot the functiog(Bu) as a function
of Bu. ForBu — 0 this function approaches the value 2.61.

This imposes a temperature-dependmiaiximumon the particle density — beyond this value, the
analysis fails, and the only way out is by questioning thedition from the sum ovek to an integral.
In fact, this transition is not justified &, — u really approaches the value 0, wheges the ground
state energy (i.e. the energy corresponding to the longagtlength). In that case we must split off
the term corresponding to the ground state energy, whichisomacroscopically occupied (that is, a
finite fraction of the particles is in the ground state).

What happens is that the gas splits up into two parts. The alopart fills the energy levels
according to the BE distribution in the usual way. This fiattcorresponds to

nnormal)\3 =261

If the total particle density is greater than prescribedHiy limit, the rest of the particles occupied the
ground state. We therefore know thgf = n— nporma particlesper unit volumewill be in the ground
state. The occupation of the ground state is

1
Ve =Fm w1
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Figure 7.2: Pressure versd$/n. The critical density corresponds to 1/2.61 on the horiakentis.

We now can deduce that
& — MU ~=1/(BVne)

i.e., the larger the system, the closer the chemical patentil be to the ground state.
As we have seen in section 7.1, the pressure is given by

p__Xel 4 /dx KIn(1—e ¥ HPH),
A3 M

Thex = 0 term no longer contributes, even whens close tog, as the denominator in the formulae

for the density is now replaced by the logarithm.

Now we keep the temperature constant, and let the densiyy Yor densities lower than the
critical density,u will vary and assume negative values. For densities hidtaer the critical value,
U = 0 and the pressure remains constant. Figure 7.2 shows theupeeas a function of the inverse
density.

7.2.3 Phonons and the specific heat

Phonons are lattice vibrations, and they can be understpoddtising that the system of interacting
atomic nuclei can be approximated bh@monic systerri.e. a system of particles connected by har-
monic springs. Close to the configuration of minimum potdrdénergy, any system can be described
in terms of harmonic interactions, and the excitations canld&scribed in terms of a collection of
independenharmonic oscillators (see the classical mechanics couBleg¢ energy for such a sys-
tem can easily be found: we simply add up the expectatiorevaluhe energies of the oscillators at
frequenciesy and at temperatur€:

ha

v = T2 garen —1

h
Do+ y
|

The first term on the right hand side is the energy-offset,stmond is the zero-point energy of the
harmonic oscillator, and the rightmost term is the averaggrgy due to the energy quantéa.
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We can evaluate the sums by transforming them into integlalsEinstein avoided this in 1907 by
requiring that there was approximately only one frequeagy,at which the oscillators would vibrate.
This leads directly to
ou x2e*
=—=3Nk———
oT e (ex—1)%’
wherex = hwe/(ksT) = 6g/(ksT). The parameteég is called theEinstein temperature
For low temperatures, the Einstein result does not matckexperimental results very well. At
higher temperatures, however, it approaches the clagswalk Nkg (why?).
Peter Debye took the actual distribution of modes which weteready encountered above for
the photons. This distribution is however cut off as themncé be more modes than particles:

Cv(T)

.ab 2
/ VCwdw = N.
0

The value of the proportionality constant depends on thaggpeeds for transverse and longitudinal
waves. Using thev? distribution, The specific heat is found as

Cv(T) = 3NksD(x0),

wherexp = hwp / (ks T) = 6p/ (ks T). The parametef, is called theDebye temperatureThe Debye
functionD(x) is defined as

3 0 xteX
D = —/ —— dx
() X3 Jo (&—1)2

For low temperatures, the Debye result for the specific lseat i
Cv(T) =C(T/6b)°.

For high temperatures, we can perform a Taylor expansioheointegrand in the expression for
D which yields
3 [
D(x) ~ g/ x’dx=1,
0
so that we find again
Cy — 3Nks
as it should be for high temperature.

7.3 Fermions

7.3.1 Degenerate Fermi gas

The name ‘degenerate Fermi gas’ is used for a dense systesistiog of noninteracting Fermions.
Dense means that
nA 3 = B

is larger than 1. In that case, the chemical potenti& positive. FofT = 0, the distribution function
has a square shape, and for small, but positiyéhe square shape gets rounded of, as shown in
figure 7.3. In the ground state, which is occupied Toe 0, all the one-particle levels are filled for
energies smaller thgm. The chemical potential at = 0 is called thd=ermi energy . For particles
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Figure 7.3: The Fermi distribution function fdr= 0 and small, but positive.

moving in a cubic box with sidg, the particles fill up a sphere kaspace, sinc& = #2k?/(2m). The
radius of this sphere is as usual related to the particle Bumb
L3 4m
3 —k,%
(2m)3 3
The factor 2 is for the particular case of electrons, andkigdacare of the double spin-degeneracy. We
conclude that

N=2

_ hAkE h2(3nm?)%3
- 2m 2m

From figure 7.3 it is clear that for positive, the chemical potential will remain more or less
constant. What happens is that some electrons svither are excited tce > &r. These excited
electrons come from a band of width kg T below the Fermi energy, and they occupy states in a
bandksT above the Fermi energy. We speak of a degenerate Fermi gaskgwhex &-. Degenerate
Fermi gases are quite familiar: in a metal, the valence @esthave a fermi energy corresponding to
about 50000 K, much larger than room temperature. In a pdati&ind of stars, the so-called ‘white
dwarfs’, the electrons have a Fermi temeperature 6.0

To show that the chemical potential for a degenerate elegas deviates only to ordékg T /&F)?
is not easy. We shall take this for granted here. If we do sa;ameeasily evaluate the specific heat of
the degenerate electron gas. Itis convenient to count tharuof states at a specific energy — this is
called the density of states. The numbekgfoints which lie in the rangk, k+ Ak is given as

&F

L3

N
Tk

D(e)Ae =2

therefore 32
D(e)Ae = v <2_m> VEle,

which can also be written as

The total energy is now given by

(E) :/de D(e)ef(e,T).
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We have used (g, T) for the Fermi-Dirac distribution function and we will sti¢& this convention
from now on. Taking the temperature derivative of this exgigen value yields the specific heat.
Using the fact that

N = /ds D(e)f(e,T),
we can write
(E) = Ner +/ds D(e)(e — &) F(£,T).

If we take the derivative with respectToand assume thatis approximately temperature-independent
(this is not quite correct, see below), we obtain:

J(E) 1 /°° E—¢&F
=——=— | deD(e
v oT ke T2 Jo () (e(S*EF)/(ZkBT) —|—e*(5*5F)/(2kBT))2

Note that the integrand is small everywhere, except in a lighdarounder. This allows us to take
D(&r) out of the integral. Changing to the integration variabte (¢ — &) /(kg T ), we have

00 X2

Cv=KgT D(EF)/

—————dx
—&/(eT) (€¥/2 4 €7/2)

The lower boundargg/ (kg T) of the integral is large but negative — we replace itby. Using

/'°° X2 dx B f
» (€24+e%2)2 3’

we have
e 2
Substituting the valu®(&r) = 3/2N/(kg T ) we obtain:

m. T

C = 7NkBT_F
where theFermi temperature gis defined byer = kg Tr. We see that the specific heats grows linearly
with T. This growth stops only at the Fermi temperature, which, afiave seen, lies fairly high. For
very high temperatures (higher th&g), the specific heat saturates &tk /2. If we compare this with
phonons, we see that for low temperature, where the speeiitdue to the phonons, growsE%
the electronic contribution dominates, whereas for temipees well above the Debye, the phonon
contribution saturates at\kg, well above the maximum contribution of the electrons.

Although this calculation yields the correct result, a feamgs have been wiped under the carpet,
in particular the fact thgtt was replaced bgr. We now present a correct calculation, which starts by
expressindN as an integral over the functidk(e) which is an integral of the density of states over the

energy: )
Ae) = / D(¢')de'.
0

Then we can write, using partial integration:

N = /(:OD(s)f(s,T) de — —/OooA(s) f(zg) de.
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The partial integration has the advantage that the enengyatiee of f is nonzero only in a small
interval aroundu so that we can exparid aroundu:

_ _ (=15 ] 2 1
N_/ [A(U)+(E HD(K) +———D'(u) (GT (e /@aT) 4 ¢ (e (EeT))?

We have used the primeto indicate a derivative with respect Ta Again selecting only the even
integrands, we obtain two terms:

N=A(K)+ D’(u)f (keT)?,

6

where in the first term we could integrate directly as thegrdaad is proportional to the energy-
derivative of f, and in the second integral we have used the same result asse@én the simplified
derivation.

The main observation now is to realize that, if we want to walie the specific heat at constant
density, the number of particles should be fixed. This ingpifeat its derivative with respect to the
temperature should vanish:

dN ! ! nz 1!
o7 =PH + D' () Z KT +D" () (keT)* -

For low temperatures, the rightmost term is much smallar tha first two, so that we have

7'[2

D(p)H' + D’(u)gkéT =0.

We now perform a similar analysis for the specific heat, alttraglines of our simple derivation

above: ot
oy = /s—ds— /D ds+/D )(E— ”)d_ng

of 1 E—pU+TU
Oc  kaT? (ele-n)/(2keT) 4@ (e-H)/(2keT))?’

Substituting this into the two integrals appearing in thpregsion forc,, we obtain:

We have

, 1 E—pU+TU
> =H / (= D)+ ke T2 (gle—1)/(2eT) 4 e (e-H)/(ZaT))? det

E—U+T
ke T2 (gle—k)/(2aT) 4 e (e-H)/(ZaT))?

/ [D()+ (6 — D' () +-..] (6 — )

Carefully analysing these integrals gives three domiremt$, where two arise from the first integral,
and the third one from the second integral:

ov = Hp'D(K) + uD’(u)gk%T + D(u)k%Té

Using the relation obtained above from the vanishing teatpee-derivative of the particle num-
berN then yields:
ov = D(u)K3T?/3.
Substituting the explicit expression for the density ofedayields the result obtained above.
Note that in this derivation, no reference to the explicitrcf D(g) has been made.
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7.3.2 Pauli paramagnetism

In chapter 3 we have already considered paramagnetisniofs&c® and 10). Here we shall consider
the full quantum description for spin-1/2 fermions — you nttaipk of electrons in a solid. Suppose we
have no magnetic field. Then, all the properties of the edestare determined by the density of states
D(¢) (see the previous section). Once we know this function,eddiviant physical quantities can be
determined. The important issue now is that this densityaiés does not depend on the spin degrees
of freedom (this is a direct consequence of the fact Biat0). If the magnetic field is switched on,
the only thing which changes is that the energies are shifted+u*B, where the sign depends on
the spin. Note thatt* is the magnetic moment — it should not be confused with chalnmiotential
which is u without the asterisk.

First we analyse how the chemical potential changes withmhbgnetic field. We do this by
calculating the total number of particles and then requiat this is constant:

N=N N = 3 [F )= ()

where the sum is over tharbital statesi; f. are the Dirac functions for the appropriate spin state.
A sum over the orbital states can however be replaced by agraitover the energy if we insert the
density of states:

1 r
N = 5/olg D(e)f (e — u*B) + D()f (e + 1B)].

The integral is over therbital energies, and the magnetic field only enters in the Fermilaligion

functions. The factor 1/2 in front of the integral takes iatmount thaD(¢) includes up- and down

spins. Now we assume that the fi@ds very small (i.eu*B smaller tharkgT). Then we can expand
the distribution functions abol = O:

f(e+u'B)~ f(e) £ u*Bf' () + (”*728)2 f”(e).

Substituting this back into the integral expressionMomwe have
N = /ds D(e)f () + O(B) +....

We see that to first order i the density does not change if we keep the chemical potamiadtant;
hence we conclude thatvaries withB only to second order.

We are interested in how the system reacts to an applied fiedjs, we want to calculate the
magnetisation as a function of the field strength The magnetisation is given as the difference
between the number of spin-up and -down electrons:

M= p (Ne =No) = p7 5 [ ) — ()]

where the sum is over tharbital states — f.. are the Dirac functions for the appropriate spin state.
The sum over the orbital states can again be replaced byegrahiover the energy:

M= %/ds [D(e)f(&—pu*B)—D(g)f(g+ u"B)].
Substituting the same Taylor expansion for the distribufimctions as above, we obtain:

M = u*zB/omde D(g)f'(e).
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For smallT, the Fermi function decays rapidly from 1 to O near the Femergy, hence’(¢) ~
—0(& — €F). Using this, we obtain
M ~ *?BD(&).

Themagnetic susceptibility tells us how the magnetisation varies with the field:

_daMm
X=dB
We see that measuring the susceptibility at low temperatiglés us what the density of states near
the Fermi level is.
For the free electron gas, the density of states was fourfteiprtevious section — we find for the
susceptibility in this case

= [J*ZD(EF).

3 %2
X=5 F
&
For higher temperature, the susceptibility can be expaimdpdwers ofkgT; the result is
3w 1T, ]

NZEF

X

7.3.3 Landau diamagnetism

Electrons moving in a solid have a magnetic moment not only gesult of their spin, but also as a
result of their orbit. This is called therbital magnetic momentf we apply a magnetic field in the
direction, the particles will have quantized field levels@sated with the- andy degrees of freedom.
In addition, they have an energy associated with their matiadhez-direction. The spectrum is given
by ,

. enB . Py

€(J,pe) = ——(+1/2) + 5.

This problem has been treated in the exercise class of yantagon course (believe it or not).

For evaluating particle numbers and magnetisations, we tod@ow the density of states, in other
words themultiplicity of these levels. This holds in particular for tk@ndy degrees of freedom, as
we can simply perform an integral ovey when summing over all states. It can be argued that the
multiplicity for the energy levels associated with the tabimotion in thexy plane is given by

. eB

We can then evaluate the number of particles and the magnetitent. This is most easily done by
first evaluating the grand partition function:

7 =] [1+eﬁ<“—fi>] :

We then have, witlz=exp(Bu):

IN%Z =SIn|1+zePé|.
yin[tze )
The indexi denotes the states, which for our particular problem areeefoyp, and j:

L2 eB _p|€MB . P
|n5/jf_/2nﬁdeJZOLxLz - In [l+zexp{ B[ - (H—1/2)+2m :
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This partition function can be evaluated in the classicaltliwherez < 1. Expanding the argument
of the logarithm, we get

1
2sinh[enB/(2migT)]’

VeB @ - VeB
In% — % e PRE/(2m g, Zoe—ﬁehaml/zvm _ ZVer
J:

o (2mmieT)M

Now the desired quantities can easily be evaluated. Withh/(2rmig T ), x = 3Beh/(4rmm) and
Uett = €h/(4rm), we have

N _Zd.f/lf B al X
79z A3sinhx
and 190 V 1 hx
Z XCOS
M= Bﬁlng ~ sk [sinhx_ sinhzx] '
We can write

M = —NperL (%),

wherelL is the Langevin function
L(x) = cothx—1/x.

The result we have obtained is similar to that of 3.9, excepafminussign. This means that the
magnetisation is now opposite to the field — this effect itedadiamagnetism
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Statistical mechanics of interacting systems: the
method of cluster expansions

Up to this point we have considered ideal gases only. These seanetimes derived from interacting
systems, such as systems with harmonic interactions (ggatlattices) which could be transformed
to a system of independent oscillators.

In general, however, we cannot transform away the intemadike we have done in these har-
monic systems. The interaction then plays a relevant roléhis chapter, we consider a method for
evaluating the correct equation of state, which for a ctatsileal gas reads:

PV =aNksT

with a = 3/2 for a noninteracting system in 3 dimensions ang- 3 for a system of uncoupled
harmonic oscillators.

Relevant interactions are those which are described instefmpair-interactions, i.e., which are
written as

V(rl7" ~7rN) = Z U(’ri - r]‘)
i<]
Important examples of pair interactions are the hard sphézeaction:

u(r) =

o forr<a;
0 forr>a,

and the Lennard-Jones interaction

i =4[ (2)-(2)]

This interaction is shown in figure 8.1.

8.1 Cluster expansion for a classical gas

In the analysis of the classical gas, we have seen that thigrafunction always factorises into an
integral over the momenta, involving the kinetic energyl an integral over the orbital coordinates:

N K2

On(T) = ﬁ/exp{—ﬁ [ —i+V(q1,...,qN)] }d3di3Nq.

& 2m

53
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Figure 8.1: The Lennard-Jones potential.

The integral over the momenta can be performed analyti€aliy a product of elementary Gaussian
integrals):
1

On(T) = NN

ZN(TV)
with
ZN(TV) = /exp [—B ZU(rij)] d3Nr,
i<)

Thecluster expansiolis a way to systematically evaluate the so-caltedfiguration integral .

So, how does it work? The idea behind the cluster expanstoririsiude first only the interactions
between particle pairs, then between triplets, and langédarger clusters. But if we want to neglect
contributions beyond a certain cluster size, we must hameesexpressions which vanish rapidly
beyond some interaction range. Clearly, the factorg-egp(r)] do not decay to zero — they will
tend to 1 for large separation since the interaction theistias. Therefore we introduce thayer
functions f defined as

f(r) = expi—Bu(n)] — 1,

which indeed decay to 0 for large Figure 8.2 shows the Mayer function for the Lennard-Jones
potential.
Using the Mayer function, we immediately see that the conéition integral can be written as

Z(N,V,T) = /dBNre*BZiqu(rij) — /dSNr I—Ie—Bu(rij) _ /d3Nr I—I [1+f(r))].

<] <]

We shall use the notatiofi(r;;) = fi; from now on.
If we write out the product occurring in the integral 8y we obtain

[0+ fil =1+ fij+ Z/fijfkl—i' S fiififiit--
i i Ik i<J<k

1<) i<j <J<
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Figure 8.3: Some cluster configurations. The top left clusberesponds to the lowest order term; the other two
are the second order terms.

The sum with the primg’ is over all possible pairs j andk,| which are distinct. Note however that
we still include configurations of the formj; j,k. In figure 8.3 we indicate the possibilities. Note
that the actual expansion consists of a sum allgrossibleconfigurations. This means that we have
a sum oveall distinct pairsin the first order term, and a sum over all ‘distinct pairs atidict particle
pairs’, a sum over all possible triplets, ....

It is clear that the first order term contaifhg§N — 1) /2 pairs. The second order term contains
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N(N—1)(N—2)(N — 3)/8 terms of the form corresponding to the upper right part afréd3.3. This
number is obtained as follows. For the first term we hisydl — 1) /2 possibilities, and for each of
these possiblities we hav®l — 2)(N — 3)/2 for the second pair. In order to avoid double counting
of these pairs (corresponding to interchanging pair 1 amd2)ave must include one more factor
1/2, which leads to the required result. For the terms cparding to the configuration in the lower
left part of figure 8.3, we havl(N — 1)(N — 2) /2 possibilities, and for the lower right part we have
N(N—1)(N-2)/6.

We work out the term

/ f(l’lz) d3l’1 d3l’2 .. d3I’N.

Obviously, the integral over all coordinates excepandr, can be performed directly, and we obtain
/ f(r12) &y drp...dPry = VN2 / f(r12) &1 dro.

We rewrite the integral over; andr, as one over; andri, =r, —ry. The integral over; can be
performed over 1, which yields an additional factdf. As the interaction is short-ranged, and the
volume is large, we do not have to impose additional conuiition the integration ovar,, so we
have

/ (r1z) &y dr...dory = VN1 / F(r12) drao.

Higher terms in the expansion are considered similarly.
Inserting the first two terms of the product expansion in tkgression for the configuration inte-
gral and integrating over the coordinates, we obtain

Z=VN NNV [ tm Lyn2NNZDN =N =3 [ Prads f(ry)f(r2)+

8
yn-2NIN= 12)(N —2) /d3r1d3r2 f(ry) f(ra) +VN 2 NN = ?N ) /d3r1d3rz f(ra) f(r2) f(roa) +---

The prefactors (the powers\dj arise from the integrations over the particles not pressethie clusters
and from the integration over one of the coordinates of eagbpgendent cluster itself.
Now we define

1
bzzé/d"‘r £(r)
and 1
bg = 203+ 5 / &3, F(r) F(r2) f (r12).
We then see, noting that
/ Bryddry F(ry) F(rz) = 402,
after some calculation that the expansion for the configamantegral can be written as

N(N—1)(N —2)

N(N—l)b2+ N(N—1)(N—2)(N—3)
V2

v 72 bz +

Z=VN|1+ b+

Generally, the expansion is built up as follows. We label diferent types of clusters by the
index j. A single point (vertex) has labgl= 1; two connected points hayje= 2 etcetera. In table 8.1
we list the first five clusters. Obviouslizz defined above contains the contributions from diagrams
3a and 3b. We calh; the number of vertices in a cluster of type The number of ways in which
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Table 8.1: Different types of clusters, their labelling dhd corresponding cluster integrals.

j Graph b;(T)
°
1 1
2 [ [d3 £(r)
3a 3 [ d3rad3r; f(ry)f(r2)
3b 3 [ 1Py f(ra) f(r2) f(r12)
4 I I 3 J dBrydProd®rs f(ry) f(r2) f(ra) f(Jro+r2—r3))

we can divideN particles intomy clusters of type 1m, clusters of type 2, etcetera is given by the
combinatorial factor

N!
[ m;! ()™
Obviously,N = 3 ; mjn;. For each type of cluster, tleuster integral b is defined as

1 .
JUEE D !d3r1---d3rnj M

vertex permutation

Now let’s go back to the expansion containing only the termertlerVN-2. If we calculate the
free energy, we first have a contribution arising from the reota, so that we have

N2
A= —kgTIn [(72”‘“‘“) LNV,

h? N!
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Including the remaining terms, we obtain

3N/2\ /N
A= —ksTIn [(2"””@) v

h2 N!
N(N—1)

N(N—1)(N—2)(N—3)

b, + 2

b3 +

ks T In [1+ N(N_l)(N_Z)bg].

V2

Performing a Taylor expansion for the logarithrwe have

B 2 _ _ _ 2(N_ 1)2 _ _
A:AO—kBT|:N(NV 1)b2+\%<N(N 1)(N2 2)(N-3) N (N2 1) >+N(N \1/)2(N 2)b3+”}
— Ag—kaT [wbz_\?—%(zm—w%mw N(N_\l/)Z(N_Z)b3+...] .

If we now use the fact thall — 1 etcetera can be replaced byif N is large, we can write this
expansion in terms of the density= N/V:

A=Ag—ksTN[nb, +n?(bg — 2b3) +...] .
Two important remarks are to be made at this stage:

e The coefficient ob3 is proportional toN as a result of a cancellation of two terms proportional to
NZ. This cancellation must happen at all orders of the exparisiorder to guarantee that the free
energy scales linearly witN (it is an extensive variable).

e The second order terim — 2b§ corresponds to the triangle term

%/d?’rld?’rz f(ry)f(ra)f(rio).

This is a specific example of a feature which occurs at alllsevihe diagrams remaining in the
expansion do not contain any lines by which the diagram casubito two disjoint pieces. The
remaing diagrams are calledar diagramsor irreducible diagrams. For a general proof of this
fact, you should consult the book of Mayer and Mayer.

Now that we have the partition function, the equation ofestatn be determined. Using

oA

P="%

we directly obtain

P=kgTn[1—bon—2(bg—203)n*+.. ]
=ksTn[1+an+agn’+...].

1This expansion should not be read as an expansion for srgatamnts, but as a formal expansion in terms which could
perhaps be relatively large. The aim is merely to group temittsa particular power ofi = N/V. A better way to perform
the expansion is to move to the grand canonical ensembleyésahall refrain from this step for simplicity.
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The coefficients

azz—bzz—%/f(r)d"‘r
a.3:—2b3—|—4b2:—%/flfzflzdrldrz

etcetera, are calledrial coefficients

The virial coefficients contain information concerning gatential. In practice, an educated guess
for the form of the potential is made, which contains sevpaahmeters. An example is the Lennard-
Jones potential which contains two parameterando. After measuring the pressure accurately as
a function of the density, the parameters occurring in thtemial can be fitted in order to match the
virial coefficients for the model potential to the experirtsmesults.

8.2 The virial expansion and the Van der Waals equation of stie

In chapter 11 we shall concern ourselves wittase transitions These are transitions which take
place when the control parameters are changed and whick taesystem to move from a phase
with certain values for thermodynamic properties to a phvelsere these properties are significantly
different. Common example of phase transitions are thedigas transition and the solid-liquid
transition. Also, in magnets phase transitions occur -etlieey are associated with a change in the
magnetisation.

The first theory which explained the phenomenon of phasesitrans was the Van der Waals
theory from 1873. In fact, the Van der Waals theory is based jparticular equation of state, the form
of which can heuristically be motivated as follows.

The ideal gas equation of state reads

PV = NkgT.

Now the volume occurring in this equation is the total voluafieghe system. However, in practice,
some fraction of this volume is excluded as the strong rgmulsteraction for short particle separation
prevents them from coming too close. This suggests that plage the volume by — Nb. It can be
argued thab =~ 4V, where\y is the volume occupied by the ‘hard core’ of each particlee et that
the particles have less space to move in, directly affeestitropic contribution to the free energy.
In fact, the volume-dependent part of the entropic termHeritieal gas

S=kgNInV,

is now replaced by
S=kgNIn(V —Nb).

To guess the value of the paramdigwe note that for a spherical hard core of voluvgethe excluded
volume is 8. Now let's putN particles in the volum&. The first particle does not experience the
presence of other particles. The second particle howevephly a volume/ — 8V at its disposal.
For the third particle, only — 2- 8V, is available etcetera. On average, the excluded volume is

1
N(0+8\/0+2-8\/0+"'+(N—1)-8V0)%4NVO«

We see thab ~ 4V,.
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In addition to this effect, we note that the internal enegyeiduced by thattractive part of the
potential. This term will for each particle be proportiomalthe number of particles within the range
of the potential. This number is in first approximation prgjmmal to the density. Faall particles we
have

N
E=Eo—Nya.

whereky is the internal energy of the ideal gas amis determined by the details of the attractive
potential. The value of the parametican be guessed as follows. Take a particular particle and
calculate its interaction with the particles nearby. Thauheis

n/ u(r)dqr.

So if we add up this contributions for all particles, and eoting for the double counting of pairs, we

see that
1

2
All'in all, we find for the volume-dependent part of free energ

a= .u(r)d3r.

2
A:—%}—N@me—Nm,

from which the equation of state follows as

A N 2 1
P—‘av—’ﬁ<v>+N@Tvrﬁa

N 2
P —
+a<v>

In figure 8.4, the pressure is shown as a function of the volpergoarticle for several tempera-
tures. We see that for large temperature, for a particulaeviar the pressure, only one temperature
can be found. Fof below a treshold valu@&, threevalues for the density are possible. It turns out
that the middle value does not correspond to a thermodyéisnistable phase, but the other two do.
Now suppose that we fix the temperature at some value b&l@md lower the pressure. When are
we at the leftmost branch of the curve, and when do we crosstovie right hand? The answer to
this question is given by a thermodynamical argument. Using

SO
(V —Nb) = NkgT.

E=TS—PV+uN,
we have
_E-TS+PV
= N .
Using the thermodynamic relation

dE = TdS- PdV+ udN,

we obtain
~ VdP-SdT

du N
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Figure 8.4: Isotherms for the Van der Waals gas.

As we keep the temperature constant, we have
1

du=-=VdPR
H N

If the phase on the left branch coexists with the phase onighébranch at a given pressure and
temperature, the chemical potentials of these two phasegdsbe equal. This means that we must

have:
/du :/VdP,

which means that the hatched area in figure 8.4 must be zero.
Now we compare the Van der Waals equation of state to theeclagpansion. Starting from

05 o) ()0 )0 )

“V-Nb “\V
Comparing this with the virial expansion for the pressure,see that

\% \%

a
ap=b— ——

ke T
ag = b’
etcetera.
Now let’s work out the first virial coefficieray, for low temperatures:

a
ke T~
We see that this matches precisely the expansion of the \fawaals equation of state! This unfor-

tunately does not hold for the higher orders. The Van der $\Vagbansion approximates the effect of
the hard core by the series

17 1 v
- = 7BU(|‘) — 3 ~ e — 3 prg —
a 2/(e 1)d°r 4V0+2 T/u(r)d r=>b

1+ 4Von+ 16VEn? 4 64VEn® +
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whereas the correct series from the cluster expansionsyield
1+ AVon+ 10vEn? + 18.4v3n% +

The Van der Waals equation takes partatifhigher virial coefficients into account. That is the
reason why it can predict the phase transition behavioberatell.
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The method of quantized fields

9.1 The superfluidity of helium

If liquid helium is cooled down to a temperature of 2.17 K,eéclbmes a ‘superfluid’. This means that
helium which flows through a pipe, cannot lower its energy rifgriactions with the pipe, so that it
moves without friction. This curious phenomenon can be t8tded using technigues of statistical
quantum field theory.

Helium-4 consists of atoms, which normally have integengppin=0). This means that these
atoms could form a Bose-Einstein condensate at low tempesatStrictly speaking however, the fact
that helium forms a liquid at low temperatures, tells us thatinteractions between the atoms become
important, and so far, a Bose-Einstein (BE) condensate é&s tudied in the case of noninteracting
particles. Nevertheless, a kind of BE condensation can tak® place in the case of interacting
systems, provided a description in terms of noninteragtiagicles is appropriate for the system at
hand. You may compare this with the description of elect@amidependent particles in the solid:
we consider the particles moving in a potential which is espnts theverageinteraction potential
of each particle with its counterparts.

The phenomenon of superfluidity has been brought in cororeetith a BE condensate a long
time ago. It is assumed that a finite fraction of particlesupies the same quantum state, and that
this state does not experience any friction with walls. A w@aee this is to consider a flow with
speedv of helium thourgh a pipe of madd. If we place ourselves in the rest frame of the liquid,
we see the pipe moving with a speeth the opposite direction. Now suppose that the liquid ard th
pipe exchange momentum This implies that the momentum of the helium becompdbefore the
exchange, the helium was at rest) and that that of the pipeciedsed by an amoupt The energy
of the pipe with momenturR® is given as

PZ

E=_—.
M

For the helium we assume a relation between energy and momaegiten asA + £(p), which can
either be determined by experiment (scattering experis)@nttheoretically.
We can now setup the energy balance between the helium apipthe

2 A Y
£(p) = ZP_M B (PZMD) ‘

From this we have, using= P/M and lettingM — co:

p2
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Figure 9.1: Dispersion relation for helium.

It turns out that(p) has a shape depicted in figure 9.1.
Now suppose that the pipe would cause excitations of thamellhen, in order for the container
to have available such an amount of energy, we should have

pv>£(p).

It is seen from figure 9.1 that this is possible only in casesfieed is large enough. The fastest speed
at which no energy transfer is possible corresponds to thayhkt line in figure 9.1 which is tangent
to the energy-momentum curve. For such low velocities,@ngansfer is not possible which means
that helium is superfluid.

If the energy-dispersion curve is measured, the critickloiy can be determined; it turns out to
be 60m/s, much higher than the critical velocity which was measuriedctly in experiments. The
difference can be explained by considering rotational amoth the superfluid. It is in this context
important to realise that if helium is superfluid as a restiBB condensation, only a finite fraction of
the liquid is in the ground state, and the rest is in a hornaestWe can express this by splitting the
total density in a normal and a superfluid fraction:

P = Ps+ pn.

The superfluid fraction of the liquid consists of particleBieh are all in the same stat#(r) which
can be written in the form: _
W(r) =a(r)e".

The superfluid number density is given by

and the mass flow is given by the quantum mechanical expres§ibe flux:

() = g (W) OW(r) — () 0w (1)) = ZafOyr).
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Given the fact that the flow is density velocity, we see that for the velocity we have

h
Us = HqDy(r).

We see that the flow can be considered as a gradient of a fangiit as the force is a gradient of a
potential. The functiory(r) plays the role of the potential. For such a flow we have

DXUSZO

(In the analogue of classical mechanics this equation ezpecethe fact that the work done along a path
only depends on the start and end point of that path). Thistagdition seems to prohibit circular
flows. For example, in the case where the fluid would rotate égylimder, we should have at each
pointr:

V=wxr; 0Oxv=2w,

wherew is the angular velocity. We see that the second equationrigilcly incompatible with a
potential flow field (ie. a flow derived from a potential as skeid above).

The expectation that superfluid helium cannot rotate waskglteby putting helium inside a ro-
tating cylinder (‘rotating bucket experiment’). For a naifluid, the meniscus assumes the shape

w?r?
Z(I’) — 2—g

which can easily be checked by minimising the total energyheffluid as a function of(r). In
experiments, although only the normal fraction was supgphtseontribute to the rotation, causing the
above relation to be modified to -
2(r) =22
P29

the experiment showed that also the superfluid fractiorigiaated in the rotation.

The explanation for this fact comes from the notion that tivefiony(r) is not a usual potential:
it is aphaseand hence defined modulat2Therefore, we may satisfy the condition

Oxv=0

without the usual relation following from it:

%us-dl#o.

In order to prove the latter relation, we must assume fhatv = 0 holds in a region of the plane
without holes in it. We can circumvent this condition by assg that the superfluid rotates around
an axis, but that the ‘core’ of this ‘vortex motion’ is not swfiuid.

When we follow a path surrounding the vortex core, we have

7{Dy-d| =2rm, ninteger

fu-ou:”—h.
m

From this, we read off two striking features: (i) the rotatibvelocity of a vortex igjuantizedand (ii)
this velocity depends directly on Planck’s constant.

Therefore we have
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9.2 The low-energy spectrum of helium

In this section we want to derive the low-energy spectrumediuin from the microscopic Hamilto-
nian: -
ﬁ k T "

In order to make the Hamiltonian tractable, we restrict elwes to a delta-function potential, for
which
Vg = Up, for all g.
Secondly, we analyze the system in the case where the phag b&tium which is in the superfluid

phase much larger than the part which is the normal phasectnféorN particles, we havé\y in the
superfluid phase, and we consider the case where

N —Np < N.

In that case, an operator term containbﬁgqbl,fqbk/bk with k +q, k' — g, k andk’ being nonzero, is
negligible (it scales witliN — Np)?, in comparison to terms where two subscripts are zero, anchwh
scales agN — Np)).

This means that we must single out all possibilities wherleast twob’s have subscript zero.
This is possible in seven different ways:

e g=k=k'=0;
e g=—-k,k'=0;
e g=k',k=0;

e k=k'=0;q#0;
e k=q=0;k'#£0;
e k=q=0,k #0;

e g=k'=-k#0.

We then are left with¥} means thak = 0 is excluded):

2
UONO Zkﬁzk bTbk UoN Ozk4bTbk+bTb k"‘bkb K=

Uo[NZ + 2No(N — No)] uONo G
Y] zk 2m

H—

bibx + ¥} 20} by + bb’ +bib_.
Using the fact thaNZ + 2No(N — No)? ~ N2, we have

~ U0N2 / h2k2 +

For a fixed total number of particles, the first term is fixed aad be neglected. The fact that half
of the term bkbl in the potential energy has been split off and approximatednot be justified
within the approach in which we analyse the low energy stathe correct treatment of the problem

Uo No

=3 (200D +b{b" +bibic ).
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should include the chemical potential, which preciselycedsthis term. A correct treatment of this
is presented in the book of Fetter and Walecka.

The question is now what the eigenvalues of this Hamiltoaizn To solve this problem, we note
that the Hamiltonian is essentially a quadratic expressfdahe b-operators, and a quadratic form can
be put in diagonal form by a linear transformation. In thise&eave must however take care that the
linear transformations are chosen such that the operatlisatisfy tractable commutation relations.
The proper choice, first made by Bogoliubov, is:

bk = Nk coshé — N, sinhé;
b_x = n_xcosh — n, sinhéy.

It is straightforward to check that thg satisfy the proper boson commutation relations:

[nk,nJ] =1

If we substitute the new expression for thein terms of theny into the Hamiltonian, we obtain
an off-diagonal contribution:

uoN
Hoo. =~ {— + M} coshé sinhé (ngnfk + n_krlk> +

UoNo

Zk (cosif 6 + sint? 6) (nkn - krlk)

We see that these off-diagonal terms vanish when

UON()/V

tanhB = —————
ﬁzkz + U()NQ/V

Substituting this into the expression for the diagonal,paet are left with

h2k2 uoNg h2k2 h2k2 2 ZU()NO ﬁzkz UoNp
H= Zk\/( ) 20 I+ T \/<2m>Jr V  2m Vv

From this, we can immediately infer the energy eigenvalués ngspect to the ground state:

E(k) = \/ (122" ool
2m V. 2m
For smallk, we see that the second term in the square root dominatesyesde that the energy is
linear ink.

Note that the elementary excitations are linear combinataf the singld¢ modes which describe
single-particle excitations: the elementary excitatidescribe excitation quanta, and are generally
denoted as ‘quasi-particles’. The simples example of aigqpaticle is the energy quantum of a
harmonic oscillator. Here, a there is only a single vibigarticle. However, the theory does not see
the difference between the energy quanta of this systemparticles’ of energyhw which can be
created and destroyed by the ladder operaiors
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Introduction to phase transitions

10.1 About phase transitions

The most common examples of phase transitions are theriigeard boiling of ordinary water. These
transitions are associated with an abrupt change of thatgenghe case of boiling, and a sudden
emergence of order in the case of freezing. These fascinptienomena have for long time been
poorly understood. It seems paradoxal that although we\melhe world around us to be governed
by smooth functions and differential equations leadingralgtical solutions, we see such abrupt,
non-analytic behaviour. In the first half of the twentietimieey it has become clear that the reason for
this nonanalytic behaviour lies in the fact that macroscopijects (such as a glass of water) consist of
large (almost infinite) numbers of molecules: a functionatefing on a paremeter, which is analytic
for every finite value of that parameter, may become nonginafithe parameter becomes infinite.

A phase transition is always characterised by a sudden eharge degree or the type of order in
the system. In order to analyse phase transitions, it isssacg to always identify a parameter which
characterises the degree and/or type of order present gythem. This parameter is called threler
parameter In the case of the boiling of water, the density is the prapder parameter. In the case
of freezing, it might be the structure factor.

The first theory of phase transitions which gave excelleslts was the Van der Waals theory.
We have discussed this at the end of chapter 8 of the notes anctecommended that you go back
and study this theory once again. There exist however offpestof phase transitions than freezing
and boiling, and an instructive system for studying phasesitions more generally is the system in
which the degrees of freedom reside on lattice sites, andigsume only two different values, which
we call + and—. The model describing such a system is the farsimg model In two dimensions,
the system is formulated on a square lattice (in fact, difiechoices for the lattice can be made, but
the square lattice is quite popular): on each lattic poishia-up or -down can be placed. Foa N
lattice, there are thus\? possible configurations. We may consider the spins as miagnements
which obviously interact — usually, the interaction is lied to nearest neighbours. Furthermore,
there may be an external magnetic field present which favalligpins to be either + or. These
considerations lead to the following Hamiltonian:

H=-KY) ssj—h)s.
3e9-3

What will be the behaviour of the model? To answer this qoastiwe start by examining the ground
state, which will be the phase at absolute zero. The firstantion favours all spins to be equal: all
spins + or all spins-. If the magnetic fielch is zero, these two phases have the same energy and
the system will choose either one or the other. For a posiidld, the positive magnetisation will

be favoured, whereas for negative field, the opposite sigheistable phase. Now let us consider

68
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Figure 10.1: The magnetisation of the Ising model as a fanaif temperature for zero field.

theh = 0 case at nonzero temperatures. This case is interestimgidethe Hamiltonian yields the
same value for any particular configuration as for the oneliithvall spins are reversed. At very high
temperaturesf3 — 0, the interactions between the spins become irrelevadtitair values will be
completely random. This means that the avenaggnetisationdefined as the average value of the
spins, will be zero. One now might think that the magnetisatvill decay with increasing temperature
to reach zero af — o, but this turns out not to be the case. The magnetisationreessa value zero
above dinite temperature. The magnetisation is shown in figure 10.1.

The Ising transition occurs in two dimensionskat(kgT) = 0.44.... Suppose the system starts
at high temperature and is then cooled down. When the systasep the transition temperature,
the phase in which all spins have either the value +1-@rmust be chosen. Which of the two
will be the low-temperture phase is not known beforehandcedhe system chooses one of the two
values, the symmetry between up- and down is broken. Thisgshenon is calledymmetry breaking
sometimespontaneous symmetry breaki@g it is not imposed by changing the model itself —itis a
well-known phenomenon which is relevant in many areas osjisyand astronomy.

The behaviour close to the transition point is interestlyysical quantities usually vary as broken
algebraic power functions of the system parameters. As ample, consider the variation of the
magnetisation when the transition temperature is appeshfrtom below. It turns that then in 2D and
on a square lattice,

m~ [T —T¢|Y8.

This behaviour is only one example of many similar ones. ramete3 = 1/8 (do not confuse this
B with 1/(kgT)!) is calledcritical exponent There exist other critical exponents for other physical
guantities and/or parameters:

om
= —_— — Y-

cn(T) 0T —Te| @
(M) DT =T~
mT)O(-T+T)f T<T
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and, moreover, we have an exponent for the behaviour of tlgmeatigation with varying small mag-
netic field at the transition temperature:

m(h, T¢) = h/%. (10.1)

For the case of the two-dimensional Ising model on a squétiedawe know the values of the expo-
nents from the exact solution:

a=0, p=1/8 y=7/4
5=15 v=1 (10.2)

For nonzero magnetic field, the magnetisation will alwaysloag the field, except for infinite
temperature. The phase transition no longer occurs forarontteld. If we consider however the
magnetisation as a function of the external field for fixedgerature (which is taken below the phase
transition temperature), then we see a sudden flip of the etisgition which jumps from positive to
negative or vice versa. This is also a phase transition, batdifferent kind than the one described
above, in which the magnetisation is a continuous functibthe parameter which is changed (the
temperature in that case). We shall from now on focus on tbergkkind of phase transition, which
is calledcritical, continuousor second orderas opposed to transitions in which the order parameter
jumps discontinuously, and which are calligdt ordertransitions. The order refers to the derivative
of the (free) energy which jumps or is continuous.

10.2 Methods for studying phase behaviour

The results given in the previous section for the behaviéthelsing model can be derived in various
ways. First of all, the Ising model in two dimensions on a squattice was solved for zero field
analytically by Lars Onsager in 1944. This is one of the mmgtdrtant results obtained in theoretical
physics of the 20th century. However, for nonzero field, nalgit solution is possible, although
some progress has been made in recent years. Also for thpnsidel on a triangular lattice, an
analytic solution was obtained by Houtappel in 1950. Foedlgimensions, no such solutions exist,
nor for Ising models including farther than nearest neigiboteractions.

Many results concerning spin models can be obtained usingtdidarlo techniques which are
performed on a computer. In a nutshell, these methods baihdo the following: in a computer, a
spin is chosen at random. Then the energy cost or gain assbeiéth flipping that spin is calculated.
Suppose this cost BE. If AE < 0, that is, if there is an energyain by flipping the spin, the spin is
actually flipped. If, on the other hand, there is an enargstassociated with the spin flip, then the
spin is flipped with probability

P = exp(—BAE).

Performing a spin flip with this probability is done as follewA random number between 0 and 1 is
chosen . If this number is smaller than é4BAE), the spin flip is carried out, the flip is performed,
else the spin is not flipped. The Monte Carlo algorithm leadsonfigurations occuring with a prob-
ability proportional to exp—BE) as required in the canonical ensemble. This can be seer@sdol
Consider the probability?, (t) that at some instance of timethe system is in some stage The
change irP, is due to the combined effect of the system leaving the gtatethe next step to enter a
stateo, and entering the stapefrom any different stater. The first type of event results in a decrease
of P, and the second one in a gain. Allin all we have

Po(t+1) —Pp(t) = 5 [-T(p— 0)P,+T(0 — p)Ps]

g
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whereT(p — o) is the probability to go to state provided the system was in a stagge If the
probability distributionP, becomes stationary, we have
Tp—0) P

T(o—p) Py

For the Boltzmann distribution, we have

I;—Z =exp[—B(Es — Ep)| = exp(—BAE).
The Monte Carlo method is flexible in the sense that in priecgmy dimension and many types of
interaction can be treated in this way, but in practice, #milts are subject to statistical errors and
will be not infinitely accurate. It is however important ttzggart from the finite size of the system, no
systematic approximation is introduced.

A method for obtaining analytic results is theean field approximationThis approximation oc-
curs in many different forms, but always boils down to replgdhe interactions between a particular
particle and its neighbours by the average value of thedntems between that particle and all its
neighbours. We shall now sketch the mean field approximdtorthe Ising model. On the Ising
lattice, each site has a number of neighbours, which weggdthe coordination number For the
(hyper)cubic lattice irD dimensions, the coordination number i\&hich gives indeed 2 neighbours
in 1 dimension, 4 neighbours in 2D and 8 in 3D. We can rewrigeHlamiltonian in the form:

H=KY (s—-m+m)(sj-m+m)-hy s =
08} .
—gan?—(Mqu)Zs —KY (s—m)(sj—m) ~ —gan?—(Mqu)Zs-

' o

(the numbem represents the number of lattice sites). In the last exjpreswee have neglected the
quadratic contribution of fluctuations of the magnetisatwound its equilibrium value. We want to
find the average magnetisatiom= (s), wheres is the average value of the spin, which does not
depend on for a homogeneous Hamiltonian (we assume the Hamiltoniésfiea periodic boundary
conditions so that a site on the edge of the lattice couplésa@orresponding site on the opposite
edge, see figure 10.2). This can easily be done as the partitiction has been reduced to that
of uncoupled spins, interacting with a ‘field” which incorptes the contribution from the average
magnetisation. Now we can evaluate the free energy by fatgrthe partition function:

F = —kglnZ = —kgTIn{ e PKaNn?/2 Blamkih)s] |
(e g o
This expression can be evaluated as

F= gquZ— ks TNIn{2cosh(Kgm+h)/ksT]}.

Note that this expression for the free energy still contdiiiesunknown average magnetisation\We
can evaluate this from our mean-field Hamiltonian:

@B(amK+h) _ a—B(gmK+h)

M=(S) = amih) 7 g pamiy — anhB (amK+h).
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Figure 10.2: Periodic Boundary conditions in the Ising mode

1-5 T T T

Figure 10.3: The self-consistency relation for the Isingdeldor different values of the parametgl = BgK.

We see that this is a self-consistency relationnfoon the right hand sidemis the average magneti-
sation which we imposed before evaluating the very sametiqyamwhich we have evaluated as the
result on the left hand side. Obviously, the two should bestirae. In figure 10.3, we show the left-
and right hand side as a functionffor h = 0 and for different values of the paramefgK = gJ.
The self-consistent values for the magnetisation corma$go acceptable values. We see that the
number of such points depends on the valugbfForqJ < 1, there is only one intersection point,
atm= 0. ForgJ > 1, there are three such points, two of which have oppositearorvalues ofn,
and still the point atn = 0. Which of these three points will the system choose. Censig the free
energy, it turns out that the = 0 corresponds to a higher value of the free energy than theenon
values, which give an equal value of the free energy. Thezetbe system will choose one of these
two. The phase diagram is therefore the same as the oneldmbanithe previous section, except for
the location of the critical point, which now lies BK = 1/q, which is 0.25 in two dimensions.
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We can now calculate the critical exponents for the Ising @hoBirst we analyse the magnetisa-
tion as a function of temperature. We can expand the tanhifumen the right hand side:

1
m=gJm— §(qJ)3m3+...

from which we obtain, writinggd = T¢/T:

m=+v3,/1— <1>

Te

Thus we see that the exponghts found to be 12, quite different from the exact resyit= 1/8 for

2D (see above). It seems that the mean field approximatiortaase large errors in the exponents.
For 3D, the exponenB is 0.324, which is already quite a bit closer to the mean fialde:. It turns
out that for dimensions greater than four, ordinary critpzzints have indee@ = 1/2. In general, the
mean field approximation becomes better with increasingedsion. The reason behind this is that in
the mean field approximation, we negleatrrelations This means that the values of the neighbours
of a+ spin differs from those of the neighbours of-aspin. Above, we have however replaced these
values bym, irrespective of the value &f. In higher dimensions (or when a spin has very many
neighbours) these correlations become less importantr@ndhean field result becomes more and
more reliable. Mean field theory is very successful in systarith long range interactions.

Now let us calculate the other critical exponents. Now weyghowm varies withh at the critical
point. This means that we must sgt = 1 and then include the magnetic field into the expression for
mand see how the latter varies withThe procedure is similar to that followed in calculatifigwe
simply must replacgJmby m+h/kgT

B h . 1 h
m= (m+ m) - é(er m) ;

3n \ Y2
(%)

giving 0 = 3, to be compared with = 15 for the 2D Ising model on a square lattice.
The magnetic susceptibility is defined as

_(om
X=\on);

Differentiating the self-consistency relation at arbigrd with respect tch and then puttindh — 0
yields
Te 1
X= <?X+?> (1—m),

1—n?
ke [T — Te(1—nP)]’
ForT > T;, m= 0 and we see that ~ | T — T¢|, hencey = 1, to be compared with = 7/4 for the 2D
Ising model on a square lattice.

from which it follows that

from which we have
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ForT < T, the calculation of the exponent proceeds a bit differeg havem~ /3/T¢(Tc —
T)¥2; putting this into the above equation leads to

_ 1
X k(o)

which again leads tg = 1.
Finally, we consider the exponent of the specific heat. Fieshote that the energy fér=0 is

given by

J0BF 1

E=-""=—-KgNn?

g~ 21
where we have used the self-consistency relation to repfectanh occurring in the second term by
m. The specific heat is calculated as

JE
Ch= (a—T>h:0forT > T,

where we have used the fact timat=0 for T > T.. ForT < T, we have

_ 3KaN

C, =
T oL

3
= ~kgN.
ke

This tells us that the critical exponemt= 0, which is the same as in the 2D Ising model on the square
lattice.

The behaviour of correlations is generally seen from d¢bgelation functionThis function is
defined as

gﬂn—mD=%s%%:%%3%@MFBH>

Note that nowj and j are not necessarily neighbours. For short distances, tsangbsolute value
on the left hand side is not justified as the expression onidgihe hand side is anisotropic. For longer
distances however, the correlation function becomes mokess isotropic, and the absolute values
are justified. The shape of the correlation function is yealivays exponential, with a typical length
scale, which is called theorrelation length &:

g(r) ~ exp(—r /&) —nP.

The termn? is the value which we expect for long distances: the averafiees of the spins ands;

are not correlated and equal to the single-site avemag€he distance& over which the correlations
decay increases when the critical point is increased. Ity fee have seen above that the correlation
length diverges near the transition point according to dregéaw with the critical exponent = 1.

At the critical point, the correlation function changesnfrexponential to algebraic:

1
g(r) ~ ﬁa

wherex is another example of a critical exponent.

If the correlation function decays with a given exponént rescaling of the physical space will
change the correlation length accordingly. If however, weehan algebraic decay of the correlation
function, it does not change its shape under a recalingbr:

11 1
900 ~ frx ~
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This behaviour is a manifestation of the fact that the sysgestale invariant If we would look at
an Ising model from a distance from nearby, and we would ntit@ahe anisotropy of the lattice at
short scales, the picture looks the sarfeactals are examples of scale-invariant objects. An Ising
model at the critical point is an example of a fractal streetu

10.3 Landau theory of phase transitions

Suppose we fix the magnetisation of our Ising model to theevauWhen we evaluate the partition
function, we can no longer sum over all possible configuratioith 5§ = +, but we must restrict
ourselves to those configurations for which the total magatdn sums up ttim If we do so, the
free energy as calculated from this partition function is firee energy evaluated for the particular
value of the magnetisation we started with. Note the diffeeewith the mean field approximation:
there we started with callingy the average magnetisation which was to be calculated; her@xva
priori the magnetisation to its predefined value. From theession for the free energy:

F = —ksTInZ, with

Z= z/exle Z Ssj+bm|,
{s} (L)

whereb = Bh and the primed sum denotes the restricted sum over the caoatfigns with magnetisa-
tion m, we see that

F=—hm—kgTlIn Z/exp [J S ssj] .
{s} (i.1)

Note that the second term should be evemias it does not have any preference for up- or down
directions. Close to the critical point, the magnetisai®amall, and we may expand the free energy
inm;

F=—hm+q+rm?+snf+....
The Taylor coefficents), r, s, ... depend on temperature. In fact, instead of temperature referp
using thereduced temperatureds a parameter:

Close to the critical pointis small.

A system at fixed temperature will occupy, at its equilibrjustates which correspond to a min-
imum of the free energy. Therefore, if we now relax the valyeve know that the minima df as
a function ofm correspond to equilibrium. Cutting off the expansion bej¢ime fourth order term,
in order for the free energy to be acceptable, we should Bave, otherwise the free energy would
be lowest at largen which is clearly invalid close to the critical point. The pareterq furthermore
can be set to zero by a suitable redefinition of the zero ofggnerhich as usual does not affect the
physics of the problem. We furthermore study first the caseralh= 0. We then have

F =rm?+snf,

with s> 0. Note thatr ands are functions of the temperatute In figure 10.4 we showr (m) for
several values af. We see that for > 0 there is only one minimum of the free energyrat 0. This
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Figure 10.4: The free energy in the Landau expansion foouari.

minimum turns into a maximum for< 0 and is accompanied by two minimadains, wheremg is the
value of the spontaneous magnetisation.

From the Landau theory, we can again derive the critical e&pts. For example, the exponent
B is found by analysing hown goes to zero whehapproaches 0. The assumption is that the Taylor
coefficients are regular functions tof We know that criticality corresponds to= 0 andr(t) = 0.
Aroundt = 0, r ands behave as

rit) =rit, s=s+sit,

wherery, 9 ands; are some constants which do not depend.ofVe assume that; is nonzero.

The minimum of the Landau expansion for the free energy iadoatm= +, />. Substituting the
expansions for andswe obtain, for smalt:

mOtY2, henceB = 1/2

the same as in the mean field approximation.
Another exponent that we can findds This exponent tells us how the magnetisation varies with
h at the critical point for small magnetic field. Usually, we uld expect this magnetisation to vary
linearly with h, but here we find a different behaviour, just as in the mead fredory. At the critical
point,r = 0, soF varies withmas
F = —hm+snf.

We see that
m O hY/3,

so thatd = 3, as in the mean field approach. Also for the other criticgoments, the mean field
values are found.

We see that the critical exponents from the Landau theoryf@ritie mean field approach are the
same. This is not surprising, as it can be shown that the melarfifee energy can be expanded in a
series which is equal to the Landau expansion. Taking theesgjmn found above:

F= gquZ— ks TNIn{2cosh(Kgm+h)/ksT]}.
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and expanding this in terms af, we find:
F=q+rm?+snf+...

with q= —kgIn2,r = Kq(1—Kag/kgT), u= Kq/3(Kq/ksT)3.

In the Landau theory it is assumed that the free energy isrdited by the average value of the
magnetisation. In reality, the fluctuations of the magitt;m must be considered as well. The fact
that these fluctuations were neglected is an approximatioitas to the mean field approximation.
This explains why the mean field exponents were recoverdtkeihandau theory.

10.4 Landau Ginzburg theory and Ginzburg criterion

In order to obtain more insight into the approximations mexdrmulating the Landau theory, we
now formulate amesoscopidorm of this theory. The idea behind this formulation is alofes.
We divide the volume of the system up into cells which are \&nall in comparison to the system
volume, but still large enough to contain many spins (in teecof a gas/liquid, these subvolume must
contain many particles). Then the average spin in such ascaltontinuous variable which we shall
callm(r): r is the location of the cell, anthassumes values betweerl and+1. As we are interested
in phenomena close to the critical point, we are dealing wiittall values ofn(r), and within each
cell, the energy (Hamiltonian) may be described by a Landgarmsion as in the previous section.
However, writing up such a Hamiltonian for eaiglolatedcell, means that we neglect the couplings
between neighbouring cells. This coupling will depend andifference between the magnetisation
in these cells; moreover, it will not depend on the sign of tliierence, even in the presence of an
external field. Therefore, this contribution can be cash@form

2 4
o [m(r') —m(r)]“+ B [m(r") —m(r)] " +...
wherer andr’ are the coordinates of neighbouring cells. Keeping onlyldaest order term in this
expansion, we have, after replacing the difference by aigmadnd integrating over the volume:

H— / (k)] + h(r)m(r) + rm?(r) + i (r) L &

This form of the Hamiltonian reproduces the results of trevjmus section isn(r) does not vary with
r. Note that the magnetic field varies with position. The possibility to vatyandm with position
enables us to evaluate the correlation function, defined as

g(r) = {m(ro)m(ro+r)) — (M(ro))*.

For a homogeneous system, the term on the right hand sidendbdepend omg.

A full calculation of the free energy starting from this Hdtmmian is difficult because of the
presence of then* term — the way to proceed is by a diagramatic expansion as idoWélson’s
renormalisation theory, which is beyond the scope of thiss® However, we can assume the critical
behaviour found in the previous section to be valid and useew Hamiltonian only to evaluate the
correlation function. This is important because the irdegver the correlation function is precisely
the term which was neglected in the mean field theory. We thier@btain a consistency criterion fo
this theory.

The correlation function with the Landau-Ginzburg Hamilan is found as follows. We take
a magnetic field which only couples to the spin located at0. This means that we have a term
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hm(r = 0) in the Hamiltonian. Now we evaluate the magnetisation atespointr (not necessarily at

the origin):
JT1rdm(r’)exp{—B [/ H ({m(r')}) d* + hm(0) } | m(r)
JNedm(r)exp{—B[[H ({m(r")})d +hm(0)]}

The correlation function is then given by

Ba(r) = T — g {m(r)m(0)) — mir)) (m(0))]

m(r) =

so if we findm(r) as a function of, we only have to evaluate its derivative in order to find the
correlation function.

We find (m(r)) by requiring that only the contribution which maximises Ba@tzmann should be
counted in evaluating the equilibrium value. This is theisoh m(r) which minimises

/HQmu»m%+hwm.
Varying m(r) by dm(r) we have
/. {2rm(r)dm(r) + 4sn?ém(r) + 2kOm(r)O [dm(r)] +hdm(r)S(r) } d*r =

We apply Green’s theorem to the term with the gradients, @adire thatdm(r) vanishes at the
boundary of the system in order to find the equation

—KkO2m(r) +rm(r) 4 2sne(r) + gé(r) =

Remember is a parameter of the Hamiltonian — it does not derjote For h = 0 we recover the
Landau result

m(r)=mg=0forT > T(r > 0) and

=My = ,/ forT<Tc (r<0).

m(r) = mo+hé(r),

and becausg(r) = dm/dh, we may identifyg (r) with g(r).
Substituting this in our differential equation we obtain

For smallh, we can write

2a(r) — Fair) = &
Og(r) kg(r) = 2k5(r) forT > T, and

2 r _
0 g(r)+2kg( )= 2k5( )for T < Te.
The solution for these equations is
_ 1 —r/&
9(r) = g

where

; K forT>T,and
- &
> forT <T..
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Sincer is proportional tol — T (see previous section), we see that the critical exponentl/2.
At the critical point, we must use= 0 in the differential equations fay.
h
Og(r) = Eé(r)
which is recognised as the electrostatic problem of findiregpiotential of a point charge. The solution

is well known: 1

g(r) ~ m>

which gives an exponemt = 0.
For dimension other than 3, the above result can be gerentalis

1
g(r)Nrd—Tn’

still yielding n = 0.

The required result enables us now to estimate the term widshneglected in Landau (or mean
field) approximation: the spatial fluctuation of the magsetibn. The relative importance of this
fluctuation can be estimated as follows:

J£ g(r)ddr N m%ddr g2-d
S mpddr £9mg -
For T approachingl; from below, we haveny = \/T/s which leads to

g2-d N r—(2-d)/2 _aane

g r
We see that the fluctuations can safely be neglected fort. For smaller dimensions, we can expect
corrections to the classical exponents.

10.5 Exact solutions

Another way for studying phase transitions is by exact smhst Quite a few spin models on regular
lattices have been solved exactly. Exact solutions arergiyeuite difficult to obtain, and we shall
refrain from treating them in detail here, but sketch thegdand apply them to the simple case of the
one-dimensional Ising model. The partition function obthiodel can be written as

N N N
Z= exp(JIy ssiu+BY s | = exp(Jss1+Bs).
{s:zil} p( i; - i; ) {s:zﬂ}il:l P88 )

We use periodic boundary conditions, so teat; = s;. Now we define thdransfer matrix as
follows

B
Ts.5.0 = €XP [JSS+1+ > (s +S+1)] = (s|T|s+1)

where we have used Dirac notation in the last expression.aWaow rephrase the partition function
as follows

Z= { 2 }<31!T\Sz> ([T Ss) (S| [Sn1) (Sn_1Tsn) (su|T|s0)
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which, using the fact th& s|s) (S| is the unit operator, can immediately be written in the form
Z=TrTN.

It is easy to see thdt is a real, symmetric matrix. Therefore its eigenvalues ead The largest (in
absolute value) eigenvalue is calldéd and the second largestis etcetera. Then

N
Z= i;/\i'\'.

For largeN, the contribution from the largest eigenvalue will doméntite sum, and therefore we have
Z~ AN

We now can calculate the average value of some sgomewhere in the Ising chain. It is easy
to see that this is given by

(s>={ > }<81|T|52> (s2[Ts3) (sa]---Is ) s (ST [sn-1) (-2 Tlsn) (snTlsa) -
s=+1

Using again the fact that an expression like this is domahdye the eigenvector with the largest
eigenvalue ofl’, we obtain
(@|s|e)
S)= .
& (@)

whereg, is the — normalised — eigenvector corresponding to the s$agjgenvalue\; of T.
Slightly more difficult is the evaluation of the correlatifumction

gij = (ss)) — (s) (s))-
We assumg >iandj—i < N. Then
g = 2T s)s (8T Isp)si (il T sy <<<plrs!rpl>>2
! A (olgn)

If we follow the same argument as we used in the calculatiothefpartition function, we would
replace the transfermatrix by its largest eigenvalue. Hewen that case,the second term cancels
against the first and the result is zero. The main contributiiothe transfer matrix comes from the
second largest term in of the first part. This the term in whvetreplace the part betweéeand j (the
term T~ by thesecond largest eigenvalue of This eigenvalue id,. Therefore, we are left with

g = G‘)J (@sie)~ (@lsia)?].

We see thaty decays exponentially with correlation length

This correlation length becomes infinite whap= A,, i.e. when the largest eigenvalue becomes
degenerate Above we have indicated that the critical point is chanastel by a divergence of the
correlation length, so we identify the critical point wittet point where the eigenvalues hbecome
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Figure 10.5: Kadanoff’s droplet picture for the Ising madel

degenerate. Important in this respect is fnegbenius theoremThis theorem tells us that the largest
eigenvalue of a symmetric matrix with all positive elemeist®iondegenerate. Therefore, the one-
dimensional Ising model does not have a critical phaseitransin general, a model which has only
a finite number of degrees of freedom in the direction perjpeitat to the transfer-matrix direction,
never exhibits critical behaviour.

The situation is different in the two-dimensional Ising rebdf this becomes infinitely large. Then
the transfer matrix becomes infinite, and Frobenius theoretonger applies. The two dimensional
Ising model can be solved exactly using the transfer matashiwd (Onsager 1944, Schulz, Mattis and
Lieb, 1964). Baxter (1982) has written a book about exadlyesl models in statistical mechanics.

Working out the transfer matrix for the 1D model and its eigdnes is left as an exercise.

10.6 Renormalisation theory

Close to a critical phase transition, the correlation larditerges. This does not mean that there is no
structure characterised by length scales smaller tharotihelation length. Kadanoff has characterised
the critical phase by droplet model. For the Ising model above the critical temperature, thipldt
picture incorporates large regions (droplets) of one sjxiection, which contain smaller droplets
of the opposite spin, and these droplets contain in turnlematoplets with the first spin direction
etcetera. Thus we have droplets, within droplets, withioptéts, ..., as shown in figure 10.5. The
largest droplets are of a size of the order of the correldgogth. ForT < T; the picture is similar,
but there we see droplets with spin opposite to the direcaifahe overall magnetisation, the largest
of which are of a size comparable to the correlation length.

The foregoing description suggests that a critical modekcale invariant as argued above in
section 11.2 in connection with the divergence of the cati@h length and the shape of the correlation
function (power law). The scale invariance of a model atiiical point is the notion which lies at
the basis of the renormalisation theory which is describetiis section. We shall discuss the general
ideas behind this theory by considering an Ising model wéhrast neighbour couplinand next
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Figure 10.6: Example of a coarsening procedure as is peeithrma renormalisation transformation

nearest neighbour coupling (including a factor 1(ksT)):

H=—ksT (J > ssi+K Y ssj>
() (L5)
where(i, j) denotes nearest neighbour pairs, whefgiag)) are the next-nearest neighbour pairs. We
study the model in thd, K space.

In a renormalisation transformation we try to formulate tfi@del on a coarser scale. Specifically,
we want to formulate the partition function in terms of nevinspwhich are defined on a lattice with
a larger length scale, as in figure 10.6. The coarse spinsea@at as instead ofs. Thet-spins are
located at the centers of a subset of the plaquettes of ttieelaiThe spind can assume the values
+1, just as in the ordinary Ising model. These values are métted by the values of the spins at the
corners of the plaquette according to the following rules:

o If 5+ 43+ > 0thent =1,
o If S;+5+S3+ s < Othent = -1,

o If 51+ +s3+54 =0 thent = —1 or 1, the actual value is chosen at random with probatsilitie
1/2 for both values.

Now suppose we fix the values bfon each plaquette. Then we can assign an energy to this
configuration using the following rule:

exp(—BH'{t}) = ;‘ef*H“sﬂwak,sff%sék%sék%si”)

S

where {ty} is a configuration of plaquette-sping k denotes the plaquettes,(f() denotes the spins
surrounding plaquett&, andW are the probabilities to have a sgirgiven the values of the four
corner spins — these probabilities follow directly from tikes given above:

e Wt=15,%,8 %) =1ifs++s3+%>0;
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e W(t=-15,,%8 %) =1lifs+5+53+9<0;
e W(t,51,%,83,%) =1/2fort =+1lif s+ + 3+ =0.

For all other configurations, the weight factd¥sare zero.
We have now merely defined a new interaction fortthéow we show what we can do with this
new interaction. We calculate the partition function foe th

ZQ_BHI({tkD _ Z Ze_BH({S})W(tkv S_I(_k)7s(2k) 7 S‘(3k>73£1k))'
{tk Ukt {s

We can now move the sum over the configurati¢tig to the right as the terre PH{{s} does not
depend on thg:
—BH’ _ K (K (K K
$ e B = 5 e B 5 Wit 5,4 <0, 4.
{tc} {s} {tc}

Now we note that the sum ovéty} of the weightsW for any fixed configuration of the four spins
s(lk),%(k),%(k),sgk) equals 1 (th&V have been designed this way). Thus,

ZeﬁH'({m}) _ ZeBH({s}) _
{tk {s

We see that the new spitisform a model with a partition function which exactlythe same as the
original one which was defined in terms of the A problem is that the form dfi’ might differ from

H. Let us however assume that we can approxirkHte up to an additive constant — reasonably well
by a form similar toH, but with different values of the interaction constan®e shall come back
to this point later. This means that in going from theo thety, the coupling constants andK are
mapped onto new oned,andK’. Then we repeat this procedure over and over.

It is important to realise that what we have done is a clegate transformationas the distance
between two neighbouringspins is twice that between tv@spins. We say that we have integrated
out all degrees of freedom at length scale of the latticetemma and are left with a new Hamiltonian
of the same form as the original one, but with a lattice caris?a, and new values of the coupling
constants. This transformation is tremormalisation transformation.

Now let us consider the renormalisation transformatiomeJtK plane. Under a renormalisation
transformation, a point, K is mapped onto a new poidt, K. How will these points transform? We
consider a few special cases.

e Consider a point wherég andK are large (low-temperature case). Then only few spimsight
deviate from the majority value, which we takd to be specific. If we calculate tihg even when
an isolated spirgy = —1 is found at the corner of the plaquette, the plaguette spithde +1.
Therefore, thdy, aremorelikely to assume the majority value than thehence the new coupling
constants)’ andK’ describing the-spins will belarger thanJ andK respectively. In other words,
in the low temperature, the renormalisation transfornmatiauses the temperature to go down.

Another way to understand this is to imagine that we colorthpins red and the spins blue.

In the low temperature phase, most of the lattice is singlered (either red or blue), with small
spots of minority color. If we look at the lattice from a dist& so that we no longer distinguish the
fine detalil, the lattice looks either red or blue, and the sd®ldiating color spots have dissapeared.
Therefore it looks like a system at= 0.
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N

Figure 10.7: Renormalisation flow.

e Athigh temperatures, the effective couplinbandK are weak. The average spin value is 0 —there
is no net magnetisation. The system will consist of patctiessingle color — these patches have
a size larger than the lattice constanbecause the spins still feel the ferromagnetic interaction
If we coarsen however, near the edges of such a patch, thepiest £n the coarser lattice will
assume random values as on the edge there are about as nreny apithere are. This means
that the edge becomes fuzzier. After a few renormalisatiepss the edges have become broader
and broader and finally these regions wheretthpins are randomly-1 or —1 cover the whole
lattice. We see that theseem to live in a system at higher temperature than the sysf¢he s
spins, in other words, the small couplingandK transform into even smaller valudsandK’'.

Again, when we look from a distance at a lattice at the lattimesisting of red and blue patches,

we see in the end a mixture of red and blue, or, in other wohdstdscaling has made the patches
smaller, and in the end they have the same size as the (n&eg ldnstant, so we have a system
at infinite temperature.

Now we can imagine what the flow diagram generated by the nealigation transformation in
the J,K plane looks like: there is a flow towards the origin= K = 0 and there is a flow towards
infinity J = K = 0. We therefore have opposite flows towards tiix@d points Both fixed points
have arattraction basinwhich is the region of points which flow eventually towards ftxed points.
Obviously, the two attraction basins must be separated liyea ¢alledseparatrix Points on that
line must flow along that line. By extending the argumentsvalfor describing the flow in thé K
plane, we can see that for= 0, K > 0, a positive coupling will be generated in the renormalisation
transformation, and the reverse is also true: from the pbint0, K = 0 we move to a point where
both are positive. Collecting all this information we hakie picture shown in figure 10.7. We see that
there are three fixed points. Two of these (at zero and infiaity so-calledrivial fixed points where
the physics of the model is easy to understand and relatixiglgl. Then there is a third fixed point
on the separatrix. The entire separatrix is interpretedlae aonsisting of critical points, because it
separates the low- from the high temperature phase.
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So far, we have only discussed the mechanics of the ren@atial transformation but have not
derived any useful result from it. To proceed, we considergartition function in more detail. The
free energy is related to the partition function by

F=—-ksTInZ.
Therefore, the free energy per sdin= F /N (for N spins) satisfies:
e PNTOK) — 7(3 K).

Now we can writeZ as the partition function of the Ising model either in term¢he ‘original’ spins
s, or in terms of the coarsened spiRsas shown above:

e BNTIK) _ § g H'(JK)—C _ o=BN'f(J'K')—C
s

The constant is the difference between the original and the renormalitaaiiltonian. This constant
also depends ohandK. There is a clear relation betwedhandN’:

N =N/2¢

as can be seen directly from the renormalisation proceduré&eep the discussion general, we relax
the rescaling constant 2 to assume any value larger tham Ladirit |. The result we can infer for the
free energy per spin is:

f(I,K)=1"9F(J,K)+c

wherec = kg TC/N.

We can analyse the transformation of the correlation in alairfashion. The renormalisation
transformation leaves the physics at length scales beymnddales over which we have integrated
out the degrees of freedom, essentially invariant, so thelkedion length does not change under the
renormalisation transformation. However, if we measueedbrrelation length in units of the grid
constant, we must realise that the latter scales Wi

E(Klv‘]/) = E(Kv‘])/l'

Now let us analyse the behaviour of the transformation diosiee (nontrivial) fixed point. Points
on the separatrix flow to that point under the renormalisatiansformation, whereas points in a
direction perpendicular to that line flow away from the fixadrt. To describe the behaviour near
the fixed point, we linearise the renormalisation transtaram. If we call the coordinates of the fixed
pointJ*,K*, we have
(I +AJ,K* +AK) 55 (I + AT K"+ AK).

To first order inAJ andAK, AJ andAK’ can be written as

AY AJ
(&) =2(a )
whereAis a 2x 2 matrix whose elements do not dependdrandAK. If we diagonalise the matrix

A, we find two real eigenvalues, and u. One of these, say, corresponds to the points on the
separatrix and will be smaller than 1. This means that theesponding eigenvector lies along the
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sepatrix at the fixed point. The other, will be larger than 1 and the corresponding eigenvectar lie
in the outflowing direction.
Now there exists an important theorem by Wegner which sajsthie eigenvalued andu must
have the following dependence tin
A=
u=I%
The corresponding eigenvectors are caléegner scaling fieldswWe call these scaling fields(cor-

responding tal) andt (corresponding tqu). Repeated application of the transformation leads to the
rule:

s ="

0 =z,

SinceA < 1 andyu > 1, we must havg < 0 andz > 0. The indices/ andz are calledscaling indices
Note that close to the critical poind,andK can be reparametrised in termssodindt. For the
correlation length we therefore have:

E(st) =1"E(1MsIM).
Choosing nown such that" = 1, we have
E(st) =t Y2E(t V%5 1).
Fort — 0, and using the fact thgf'z < 0 (see above), we have

A

E(s) =t Y01 = 7

From the renormalisation flow plot, we can infer thebust be related to the temperature, as varying
the temperature corresponds to moving on a straight lirsutfir the origin. We therefore can identify
t:T_R,

Te

and we see that the critical exponenis given by 1/z.

We have seen that near a fixed point, there is an outward flovesmonding to a positive scaling
index (eigenvalue- 1) and a negative scaling index (eigenvatud). Scaling fields with positive in-
dices are calletelevant those with negative indeces anelevant and those with index 0 are called
marginal Note that any point on the separatrix moves under the realgation transformation even-
tually to the fixed point. Therefore, the behaviour at longgkl scales of these points is dominated
by the properties of this fixed point.

Other critical exponents follow from a similar analysis loétfree energy. To analyse these expo-
nents, it is useful to expand the parameter space to incha@emagnetic field (including the factor
1/ksT):

f=f(J,K,B).

Therefore, we have three scaling fields, which we denotetaandh. Note that the corresponding
scaling field must be relevant, as the magnetic field breaksyimmetry and destroys the critical
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behaviour. If it were irrelevant, there would be points egponding to nonzero field which would
flow to the fixed point, and therefore these points would kticati which, as we know, is not the case.
We callv the scaling index, associated whh The direction corresponding tois perpendicular to
the plane of the renormalisation flow plot in figure 10.7.

We call the scaling fields, t andh. The interpretation of these fields is as follows:

e t corresponds to the temperature,
¢ h corresponds to the magnetic field,
e scorresponds to a particular combination (e.g. the ratid) arfidK.

If we are at a critical point and change either the tempegaturthe field, we destroy the criticality.
However, a judicious change of ballandK keeps the system at the critical point.
We have seen before that the free energy per spin transfams a

f(s,t,h) =179F(<,t',0) +c(st,h).

We now neglect(s,t,h) as this is a regular function, and we are interested in thegiahe free
energy which contains singularities, as these determmeritical properties. Aften renormalisation
transformations, we have

fsing(S,t, 1) = 17" fging(I™s, 1%, 1™h).

Again we takd "™t = 1. Therefore we have
fSing(S’t’ h) = td/zf (Stiy/zy :l:l, hti\I/z).

From this expression we can derive the critical exponentsrins of the scaling indices. We may first
note that agaist ¥/Z will approach 0 (see the discussion concerning the coivel&ngth).
First, we calculate the exponeatfor the specific heat per particle. This is found from the free

energy per particle as
oo (2
"\ )y

Restricting attention to the singular partafwe see that
Cy O td/Z—Z’

so that
a=2-d/z

The exponen{3 describes the behaviour of the magnetisation when thearitemperature is
approached from below. Recall that the magnetisation gy

ne (2
- \dh/ o

The contribution to the magnetisation arising from the glagpart of the free energy is therefore
m td/ztfv/z7

so the exponeng is found as

B=(d-v)/z
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For the susceptibility exponemt we find

dm 0%f _ 4
= —— = — /—ZV/Z
X=1gh = gre DTS
and we have
y=—(d-2v)/z

Finally, the exponend describes how the magnetisation varies with the appliechetagfield. In
order to find this exponent, we choassuch that™h = +1. Then,

fsing(S,t,h) = ||V £ (s]h| YV, t|h| =7V, +1),

so that
m— ’h’d/v—l7

yielding S v
=9
A different kind of analysis enables us to find the criticghement associated with the correlation
function, which, as we anticipated above, decays algediiaiwith distanceat the critical point The

decay is defined in terms of a critical exponant

1
g(r) ~ rd—2rn°

Now we note that the susceptibilfyis related to the correlation function by the relation

X = /g(r)ddr.
This relation is derived as follows.

e~ 3 (SO)s(r)) ~N(s(0))”

T

where use has been made of the translation invariance oysitens. Given the fact that the magneti-
sation is given as
m— 2r S(r=0)exp[Ho({S(r)}) +h3, s(r)]
>rexp[Ho({s(r)}) +h3,s(r)]

and usingy = dm/dh, we see that

2

2 S(r=0)3s(r)explHo({s(r)}) +h3 ()], [ZrS(r =0)expHo({S(r)}) +h3, ()]
Srexp[Ho({s(r)}) +hy, (r)] SrexpHo ({S(r)}) +hy,s(r)] ’

where the first term derives from the numerator, and the skftom the denominator in the expression
for m. We recognise the right hand side of this equatiorf @& )ddr.

Now the exponenfj can be derived by evaluating the contribution from the algielcomponent
of g(r) in the integral. In order to do this properly, we must reatisat the algebraic decay sets in
beyond a distance of the order of the lattice conssarind that, close to the critical point, where the
correlation length€ is large but finite, this decay persists up to the distafhcleut vanishes beyond.
Therefore we have

x Ot(@-29/z /

a

X:

R

d-1
a2’ dr,
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where the angular degrees of freedom have been separatéamuthe integral, as the integrand
depends only on. From this, and from

0t V=t

we see that
td-2v/zg2-n gtn-2)/z

so that
n=d+2-2v

10.7 Scaling relations

In the previous section, we have seen that the critical bebais governed by the positive scaling
indicesz andy, i.e. the indices corresponding to the relevant scalingdieThere are only two such
fields, but there are six critical exponents. Thereforeettmonents must be related among each other.
Inspecting the expressions for these exponents, we have

e v=1/z a=2-d/z so
dv=2-aqa.

e a=2-d/zB=(d-V)/z y=—(d—2v)/z s0
a+2B+y=2

e B=(d—V)/z y=—(d—2v)/z 8 =v/(d—V) S0
B(6-1)=y.

e y=—(d-2v)/zv=1/z7n=d+2-2v,s0
y=(2-n)v.

It is clear that the critical exponents of the Ising model=£ 0, 3 =1/8,5 =15,v=1,n =1/4,
y = 7/4 satisfy these scaling relations fde= 2 whereas the mean-field or Landau exponeats- 0,
B=1/2,6=3,v=1/2,n = 0) satisfy these relations for= 4.

10.8 Universality

Suppose that we add new interactions or fields to the Haraion‘New’ here means that they
cannot be expressed in terms of the interactions and figldadyl present in the Hamiltonian. These
new terms then have their own parameters, so the total pseasmace of the model acquires extra
dimensions. Obviously the effect of the new terms strongdgathds on whether they are relevant,
irrelevant or marginal. If the new fields are relevant, thegirt presence will move the system away
from the critical point under the renormalisation transfation. If the terms are irrelevant they have
absolutely no effeatn the critical exponents. If they are marginal, this meaas the fixed point lies
on a line of critical points, and on this line, the criticabexents may vary. The important notion here
is that adding irrelevant fields leaves the critical expes@emchanged. All the models which differ
from the original one by irrelevant terms, have the sameatibehaviour. The class of models which
is governed by one and the same fixed point is calledittireersility classof the system.
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Figure 10.8: The renormalisation transformation for thergular lattice in 2 dimensions.

10.9 Examples of renormalisation transformations

As an example of a renormalisation transformation, we cmngihe Ising model in two dimensions
on a triangular lattice. The reason we choose this lattiteasthe transformation is simpler than for
the square lattice. The transformation is shown in figur8.10/e take for the interaction only nearest
neighbour couplings into account, and take the magnetit éiglial to zero. Two neighbouring coarse
plaquettes are arranged as shown on the right hand side of fi@LB. The plaquette spins are chosen
according to the majority rule: the plaquette spin is theesasithe majority of spin values at the three
corners of the plaquette. If both plaquette spins are pesithen the sum of the Boltzmann weights
corresponding to all possible configurations, given thattito + values of the plaquette spins is

g Hi+) — g8 1 3eW 1 22 1 3168 P 1,

H includes the factor kg T = 3. The total number of weights on the right hand side adds uggto 1
since both plaquettes have four possible configurationsngilieir majority spin. For opposite spins
we have

e P —2eN 1 22 L 44 62 426V,

Therefore, calling the plaguette spinsve have a Hamiltonian of the form

Hrenormalise(ﬁ{ti}) = z J/titj7
(B)

whereJ’ obviously includes the factor 8 and where the renormalised coupling constHns given

by the requirement
e H(++)
& =

S e A
which leads to the following explicit form of (J).
1 [e¥4+3eM+2e7 +3+6e 2+

J=ZIn
2 26N 1 262 + 44 62 4 24
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Figure 10.9: Renormalised coupling constanas a function of the original coupling constahof the Ising
model.

In figure 10.9, the renormalised coupling constant is pib#e a function ofl. There is a fixed
point at the valuel ~ 0.365. The exact solution for the Ising model on a triangul#tice gives a
value 0.274.

The slope of the plot of the functiali(J) turns out to be 544 —this is the value of the eigenvalue
A. It then follows directly that the scaling index= 0.79, to be compared with the exact value of
1.0. Itis straightforward to include the magnetic field int@strenormalisation procedure. This leads
to a scaling index for the magnetisation of 2.02 (exact vdllg¥50). All in all these values are
encouraging. Moreover, this procedure can be extendeigsfiawardly to encompass larger and
larger clusters (Niemeyer and Van Leeuwen) and the valuesnal in this way are within less then
a percent of the exact ones.

10.10 Systems with continuous symmetries

Another example of a system for which a renormalisationsfi@mation can be carried out is they
model. This model has physical realisations in superflulahivefiims and arrays of superconducting
islands separated by Josephson junctions. Moreover, tlielnsan be mapped onto a roughening
model, which describes the roughening of a crystal surfatieincreasing temperature.

The model is formulated on a 2D lattice; the degrees of freetiave a 2r periodicity: they
can be viewed as the angles of unit vectors which in turn cacobsidered as ‘planar spins’ (see
figure 10.10). The Hamiltonian of the model is given by

H=-KY cog8-6).
{1.1)

This Hamiltonian favours the spins to be alignéd=¢ 6;).
The behaviour at low temperatures of this models is domihbyetwo types of excitations. The
first type of excitations argpin wavesThese are excitations of the form

6(r) = Aexp(ik -r)
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Figure 10.10: ThXY model with planar spins on a square lattice.

with wavelengths &/|k| much larger than the lattice spaciagln that case we can approximate the
cosine occurring in the Hamiltonian by a quadratic expoessi

1~s [i-da-a]

The first terms in the square brackets add up to a constanbwbgs not influence the model. Keeping
the second term leads to the so-calealussian modehs the Boltzmann factor has a Gaussian form.
The Gaussian model can be solved exactly by Fourier trangfigrthe variable®,. We set

Lze ek

where we assume that we are dealing withLanL square lattice. Then,

Ze |krI

Therefore, we obtain

Z[G(ri)—e(r.Jrax [ZG ( ik _ g 'k‘(“+a*>>r.

Using the fact that, sinde assumes the valugs= 27 <1(ny, ny), we have

> &k = N o,

we obtain

3 [61r) — 0111 +a%)]* = 3 [2- 2052k 1) —K).
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Including the terms which are neighbours alongyturection, and takingk| small, we have

—%Zkzé(k)é(—

DefiningJ = BK, the partition function can be written as

7— / 1 Bkexp[ K28(k)B(— k)}
This is a product of Gaussian integrals which can be evalumatalytically to yield
z=T] J—ZZ
For the free energy we then find
F=—keTInZ=— kBT/I s d%

The integral has a lower bound corresponding #f(2a) and an upper bound off2a. We refrain
from working it out but emphasise that this free energy israiydical function of temperature (which
is hidden in the parametd) so there is no phase transition.

Surprisingly, the model is critical for all temperatureshig can be seen by working out the
correlation function

(cog6(r) — 6(0)]) = <ei[9(r)—9(0)]>

(the sin term disappears as a result of antisymmetry). Aad¢kien (Hamiltonian) is quadratic i,
we can evaluate this expectation value.

e a6 e 118
<e|(9r 90)> - <eN sk(€ 1)6k> = frlk EEENEIENE
J T dBce™z 2«

with p = gk —

We see that the expressions in the numerator and denomfaetorize. For the numerator we can
work out a factor. We writéd, = X +iY and px = pg +ipp. Furthermore, we realise th{—k) =
6*(k) and similar forr. Finally, we combine the integrals ovierand—Kk into a single integral over
k, which now runs over half the reciprocal space only, to obtai

/.ei(l—lkek"rl—l—ke—k e—szeke—kdek — /eZi(Hlx—HzY)e—sz(Xz-i-Yz)dxdY
We see that the two integrals factorise. For the integrat ¥wee have

/ez'“lx e XX = /exp[ Jk2( Jk2> ]exp(—\]”—sz)

The Gaussian integral gives precisely the same result asthesponding Gaussian integral occurring
in the denominator, so after dividing this factor out, theuteis

2
oo 1),
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For the integral oveY, we obtain

exp [ jtz]

| |?
exp|——->|.
p[ K%
Carrying out the product ovee over theentire reciprocal space, and realising that the product of
exponentials can be written as the exponential of the sunobizen

oo 55wl 37

Let us call the result of the surf(r):

multiplying both terms gives

2— Zcos{k r ]

2—2cogk-r)

f(r):% 2

Then, in the continuum limit;

02 02
<W +0—y2> f(r)= ZZcos{k-r) =2N4 .

This is recognised as the Poisson equation for a line charga point charge in two dimensions).
The solution of this equation is

1
f(r)= I—Tlnr,
so that we find for the correlation function
_ 1
o(r) =g(r) De "/ = o

We see that this correlation is critical (power law).

In fact, the Hamiltonian favours spins to be aligned. Howgetlge spin waves can be formed
at such low energy cost that they will destroy any attemptuitdbup a real ‘long range order’, in
which the expectation value for spins very far apart apgrea@ constant. This is an example of the
Mermin-Wagner theorem (1966) which states that systents ewibtinuous symmetry cannot exhibit
long range order.

In addition to spin-waves, the XY model can exhibit excaatiof a vortex character. First we
study a single vortex as in figure 10.11. The energy of suchri@x@an be calculated as follows.
Consider a circle of radiug around the center of the vortex. The number of spins on thgtwill be
of order 2w /a wherer is the lattice constant. The difference between neighbguspin angles will
therefore be &/(2mr /a) = a/r. The energy stored in the spins around the circle is thexefor

rK 2 Kma
E(r) ~ 21— (—) ~ 8
(r)~ az2 r
For the total energy, we must integrate this for radii up todhder of the system si& and we obtain
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Figure 10.11: An isolated vortex in tB€Y model.

The entropy associated with a single vortex is proportieméthe logarithm of the number of ways we
can place the vortex on the lattice:

S~ kgIn(R/a)?.
The free energy of a single vortex can therefore be estintatbd

F=E—TS= (1K — 2ksT)In(R/a).

We see that for low temperaturescastsfree energy to build up an isolated vortex, whereas for high
temperatures, free energygainedwhen a vortex is formed. We therefore expect a sudden, sponta
neous proliferation of vortices when the temperature edeeeparticular value, which we associate
with a phase transition.

To see what the situation is like in the two-vortex case, vat fiote that a vortex centeredratis
described by a solution of the equation:

Ox O[6(r)] = £21d(r —ryp).

It can be rigourously shown that the vortex system behavassgstem of charges in two dimensions.

The vortices have two possible winding directions, coroesling to positive and negative charges. A
vortex pair of opposite sign has a total energy of

Epair = —11J8€; In|ri—rj|

whereg ,e; = +1. Therefore, two vortices havefiaite energy (as opposed to a single vortex) and the
entropy helps these pairs to proliferate at low temperature

The vortex system can be described by a so-calledlomb gasn two dimensions: this is a
gas consisting of charges which float on the lattice. Theupgctve have developed so far of the
behaviour of this model is that at low temperatures, theesyswill for charge dipoles and therefore

be an insulator. Beyond a transition temperature of therat& = 11K /(2kg), the dipoles will ‘melt’
and free charges will occur: the insulator becomes a conduct
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Figure 10.12: Renormalisation flow for the Coulomb gas. Taedision point lies al = 2/ 7.

Kosterlitz and Thouless have performed a renormalisationqulure to analyse the Coulomb gas
model. The Hamiltonian is

—my aeV (i —rjl)+ 1y &
] T

The second term is added to have the freedom of changing #mical potential of the charges.

The renormalisation transformation can also be obtainadyusself-consistency requirement for the

linearly screened, or effective potential. This potenisatiefined as the free energy associated with

two infinitesimal charges placed @iandr. If the system is an insulatofl (< T¢), the potential with

still be logarithmic, but with a prefactor given by the digléc constant. For high temperatures, when

free charges can exist, the system becoms a conductor apdtémial acquires an exponential form.
Definingz = exp(u), the renormalisation equations have the form

dJ 20,
dz

The flow diagram is shown schematically in figure 10.12. Ssppee start at some values fband

z In the low-temperature phase, the renormalisation trajgdrings us to a point with equivalent
critical behaviour. We see that we end upzat 0, i.e. a phase with very low vortex density and a
renormalised coupling constadt In this phase, the correlation function is simply

g(r) = exp(—redinr) =r~".

This is therefore a critical phase. Beyond the critical terafure, the behaviour of the system corre-
sponds to that of a system with an infinite concentration ofises and high temperature. This is a
disordered phase. The transition temperature Iiefs:t;uZ/ 11, as anticipated above on the basis of a
simple energy-entropy balance argument.
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What consequences does this have for physics? We shalllsetize vortex physics of superfluid
helium films. These films are essentially two-dimensional] ¢hey carry a particular density of
(quasi)-particles which are all in the same quantum statéghwis characterised as

b(r) = (e

As we have seen in chapter 10, we can have vortices assouidted rotation of the phase around
a centre where the superfluid densiiyr) = a?(r) vanishes. On page 63, we have found for the
superfluid velocity: .

Us = — Oy(r).
Outside the vortex centres, the superfluid density is rgugbhstant, so we can evaluate the kinetic
energy for the superfluid fraction as

H="2 [ ) u—p[wﬁfn

The phasey/(r) have the same property as the degrees of freedom iX'thenodel, in the sense
that they are periodic with period/2 This means that the phase can exhibit vortices. The cayplin
constant is

_"p

= kT
What is measured in experiment is the renormalised couglimgtant which, as we infer from the
last equation, is in fact the superfluid density. At the pheaesition,J jumps from the value 2t to
zero. This implies that the measured superfluid density gifrgm

2kgTm
Perit = — 75—

to zero. This has been confirmed experimentally by BishopRempy in 1978.
Similar phenomena have been observed for coupled arrayseptison junctions (Herre van der
Zant) and for surface roughening transitions.
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Irreversible processes: macroscopic theory

11.1 Introduction

Up to this point, we have been exclusively concerned withligsmgum statistical mechanics. If we
consider a system in equilibrium, and identify a subvolunitiw this system of size (much) larger
than the correlation length, we find that the thermodynamiperties within this system are equiva-
lent to that of the entire system. However, if we are not yetdnilibrium, this may no longer hold,
and neighbouring subsystems will have different thermadyio properties. The systems will how-
ever tend to equalise these properties, by exchange ofyememmentum, or other quantities. This
exchange can be formulated in termdlakesof the quantity under consideration.

Now consider such subcells inside some larger system. Wis fme a particular quantit within
subcella. Note that a necessary condition for definiygs that the subcell must be much larger than
the microscopic length scale (atomic correlation lengtid enuch smaller than the distance over
which thermodynamic quantities vary — we then are inhigdrodynamic limit If A; is a conserved
quantity (for example particle number, energy) then a chasfghi(a) may take place through two
mechanisms: (i) a loss or increase dueitdlowing to or from neighbouring cellb; (ii) a loss or
increase due to some source or sink for the quawjtinside the cell. For example, particles may
move from one cell to another [process (i)] or the cell may benected to a source or drain of
particles [process (ii)].

The conservation law for quantiy can be formulated as

dA(t) =—Y ®j(a— b)+ P;(sources— a).
dt ey
The quantitiesd; represenfluxes their dimension is the dimension Af per unit of time.
Now suppose thad; can be defined in terms ofdensityp;:

Ay = | L (11.1)

for any cella much larger than the correlation length. Then we may alsméefilocal fluxj; and
sourec terno such that the conservation law above may be formulatedg alsendivergence theorem,
in terms ofp;, jj anda:

opi ,

0—? +0:ji=a.

11.2 Local equation of state

When we want to consider the flow of a quantAyin the sense of the previous section, we must
take thisA; to be extensive, as can be seen by expression (11.1). We éendrsthe beginning of

98
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this course, that with each extensive variable, there imfugate, intensive variable. As an example
we may consider the energy, which is the quantity which flomsnfone cell to the other, and its
conjugate variable temperature, which will change in the ¢ells as a result of energy transport, but
which is not subject to a conservation law as in the previeatien.

As the distinction between extensive quantities and tiéémisive, conjugate partners is quite ex-
plicit in the study of nonequilibrium and transport, it iswenient to take the entropy as the statistical
potential: this potential is defined in terms @ftensivequantities and the corresponding intensive
guantities can be determined as derivatives of the entropy:

oS 1 0SS u 0S P

E T N T N T
The last relation is irrelevant for our purposes as we do aosicler the volume as a flowing quantity.
What may flow, however, is the momentum of the particles insolmvolume, so we must consider the
entropy for fixed volume, particle number, eneagyd total momentunp. Note thatp is an extensive
quantity. It can be shown that the entropy does not change wieeimpart an equal velocity to all
particles in our system. The energy measured with respdlcetsystem box, will however change by
an amount?/2m. Therefore we have:

S(E,p) = S(E — p?/(2m),0).
We find the derivative with respect to the momentum compopgeas follows:

OSE.p) ISEOp u

op; JE m T’

wherey; is the mean velocity.
In more general terms, we call the conjugate variable of &ensive variabley, y:

_os
M_0A|‘

As Sis extensive, as are the extensive quantifigsve have
SAA) = AS(A).

Taking the derivative with respect foand then setting = 1, we have

JS
S= ZAiﬂ = ZVIAP
For the local quantities, this is
> | aronrydr=s
|

From this, we see that
(r,t) = _0S
W= 5pi(r>t).

Summarizing, we see that there exist pairs of conjugatabtes, one of which is intensive, and
the other extensive. Intensive partners of extensive bimsaare found by taking the derivative of
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the entropyS with respect to the extensive variable. The variation ofitibensive variable drives the
transport of the extensive variable. An obvious examplefsperature difference which drives the
transport of energy.

We are usually interested in small deviations from equilitor; and in that case we may postulate
a linear relation between the driving force,affinity, which is the difference of the intensive variable
in neighbouring cells and the curredf(a — b):

a—>b ZL” VJ )]

This can be cast into a local form by taking the volunaeand b very small and dividing by the
volume: then the current, (r,t) can be related to the gradient of the affinjtyalong the cartesian
directiona:

Ja(r,t) = j6(r,) = Y L (a,b)dpy (1. 1).
1B
In this chapter, we shall always ugef3 for cartesion directions.

11.3 Heat and particle diffusion

We can apply the general analysis of the previous sectiottgetparticular examples of particle and
heat diffusion. As already mentioned, the heat diffusiodrigen by the gradient of the temperature.
We assume that energy is the only flowing quantity — this tyfdeamsport is called thermal conduc-
tion. Note that we do not include particle transport. Thetlsearent can be directly derived using the
results of the last section:

Jag(r,t) Z L ( > )

In an isotropic medium the relation between temperaturetead current is given by the familiar
relation
je(r,t) =—k0O(T),

wherek is thethermal conductivityWe see that in this case the tenlsé@ is diagonal:
L2 = kT25,.

The conservation law leads to an interesting result. Theggraensity is called, and together
with the expression for the current just derived, it entarhie conservation equation to give

dJde 2 1\
E—FKT - |:|<T>—0.

We need a so-called constitutive equation to reai@ the temperature. This is
e=cT,

wherec is the specific heat (per unit volume), which we assume todegandent of temperature. We

then obtain
C(9T(r,t)

T KO?[T(r,t)] =0.
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This is the famousgeat or diffusion equation The solution with intial conditiorT (r,t = 0) = 53(r)
is given as

T(rt) = Wexp[—rz/mm)] ,

with D = k /c. This solution shows that sharp features (delta functidespy to smooth shapes in the
course of time.

For patrticle diffusion in a system with uniform temperat(re. no energy transport), we can
focus on the particle transport. This is driven foyT according to the previous section. The current
is related to the gradient of this driving force by the linessponse relation:

jan(r.t) = ZL“%( rt)).

Just as in the previous section, we may compare this withetindiar expression
in(r,t) = —D0On,

known agick’s law. This comparison necessitates an additional step, whicivies another relation
betweenu andn. This relation is
ouy 1
<%>T ke’

wherekr is the isothermal compressibility. In fact, this comprb#isy indicates how difficult it is to
compress a material, and its definition is

o L (Y
IERVAWT-J A

Ndy + SdT—VdP=0,

<0P> N
ou)+ 7
so that we obtain

4 ), (), (), (), (),

which proves the relation used above.
All'in all, we obtain for the current

From the Gibbs-Duhem relation

it is seen that

: Lnne 1
rt)=————=0n(r,t
Nt = == 0N ).
Hence we find
0nLNN n2KTT '
The particle conservation equation then leads to a diffustuation similar to that for the heat trans-
port obtained above.
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11.4 General analysis of linear transport

Suppose we have a homogeneous, isotropic fluid at rest amlilibeium. Obviously, the enetropy
is maximal, as we are in equilibrium. Now we imagine a box thatmove at uniform velocity along
the fluid. Obviously, our imaginary box does not change thesjgs of the problem, and within the
box the fluid is still in equilibrium. However, the fluid now mes, hence energy and momentum are
transported through the walls of our imaginary box. Alsarawy will move in- and outside. We
know however that the net flux, which gives us the change afggnenomentum, entropy and so on,
vanishes. All these currents are therefore reversible;digsipative currents.

Now imagine another process in which we place many partiatethe centre of a box. The
particles will diffuse from the centre to fill the box homogewisly (if we are in the gas phase). If
we now imagine again a box in the system, for example a boxsunding the centre, we have again
currents of energy, momentum, entropy, etcetera, but ttwsents will no longer be reversible. In
particular, we know that the entropy is not conserved, amad ithwill increase in the entire box.
Therefore, if we divide the system in two parts, there will deexchangeof entropy, but as an
exchange does not change the total entropy, in addition ¢h bax there will be an increase or
decrease which is not cancelled by an opposite change inthie® box. We have distinguished
reversible and non-reversible currents. The latter arecéed with an increase of entropy, and
therefore with heat generation. The problem of non-relbrsor dissipative, currents is of particular
interest from now on.

We shall now analyse the transport problem in a general wiagtiations of a system from the
equilibrium state can be related to the transport propedfahat system. The analysis proceeds as
follows. Suppose we have an isolated system, which tendsatdnnise its entropy. The entropy
depends on extensive quantitigs We callA the values for which the entropy assumes its maximum.

Fluctuations correspond to deviations of #fydrom their equilibrium values. The corresponding
variation in the entropy can be expanded in a Taylor series:

02S(Aq,Ag, ..., A . .
S(;A;Aj N)(Ai—Ai)(Aj—Aj)Jr....

~ o~ ~ 1
S(Al,. .. 7AN) = S(A]_,Az,.. . 7AN) + E Z
1)

From now on, we shall confine ourselves to the case where gtersyis close enough to equilibrium
to justify dropping the higher order terms in the expansidhe fact that the first-order term is not
included is due to the fact th&was expanded around isaximum- hence, the first derivatives are
all zero. The fact that the entropy strives to its maximunhésdriving force which causes fluctuations
to dampen out.
Recalling that
S=kglIn Q,

whereQ is the number of states accessible to the system, and comghinis with the fundamental
postulate if statistical mechanics, which says that eadhesde states is equally probable, we have
for the probability of having a state where the quantigs= A; — A; are nonzero, the following
expression:
_ exp(—3i; ‘Faa)

Jooday - dayexp(- yi; Faa;)’

P(a,...,an)

where . 5
1 028(A17A27"'7AN)

M= 2 IAOA;
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Note that the fact tha&B has a maximum implies that the matsix has positive eigenvalues.
From this we can derive a simple expression for correlatimttions of theg;. Note that

10P 105
Pda, kgda’
Taking the average on the left and right hand side with radpebe distributionP we obtain

oP
<a > /da1 daNa P kB/dal dava g

Integrating by parts the integral on the right hand sideddad
S
< iz > e

Moreover, fori # j we find along the same lines:

S
<%—a,-> =0

You may object that the first derivative &with respect to they is zero. This is true at the
maximum, but near that maximum, we find

0S
- = Viiaj.
a3
Using this we rewrite the result above as
Z Vic (@) ) = ke §j.

The entropy changes in the course of time as

Za Zaw

where we have used the definition of the affinjiy(see above). We know that the entropy strives
towards becoming maximal, and the way to reach this maximsuy ichanging the values of tlag
This change only stops whetS/da; = y is zero. In a linear response Ansatz, we have the following
relation between thg and the time-derivative af;:

&:ZLijyj.
J

This equation relates the rate of change;db the affinitiesy;. The rate of change @ is often called
acurrent, and the affinities are callagkneralised forceNow it is however time to object: above, we
used a different picture, in which a current was really aisged with theflow of a quantity, and hence
had a direction, and this flow was related to Hupatial variationof the affinity [in electrical terms:
with the electric field= spatial variation of the potential (=affinity)]. How can wanslate the above
analysis to the problem of currents?
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The key is to not consider the flowing quantitisghemselves as variables, but their firetments

mi:/pi(r,t)r d3r.
\%

Now suppose that this moment changes in time. Ititsomponent increases, the slopefoin the

increasing directiomy, increases. This can only happen when there is a net cuitrantce we see

thatj; O m;. Therefore, the present analysis directly carries oveuteeats and their driving forces.
Now we consider the expectation value

(ai(t+1)ay(t)) = (ai(t)aj(t)) + T {(&(t)aj(t))
= (gi(t)ay(t)) + Ty L <£a-(t)>
] 2 m\ dag )
= (ai(t)aj(t)) — TLijks.

We see that the linear transport coefficiebts are found as the time correlation functions of the
fluctuations:

L = é [(ai(t+T)ay(t)) — (a(t)ay(t))] .

From this, using time-reversibility of the correlation iion,
(ait+1)aj(t)) = (at-1)ay(t))
we see that the transport coefficients must be symmetric:
Lij = Lji.

This nontrivial property follows from what is calladicroscopic reversibilityas it reflects symmetry
properties of microscopic correlation functions whicHdal from the underlying time reversal sym-
metry of the microscopic dynamics. This relation is usedtdyochemists to construct phenomeno-
logical systems of equations which describe exchange afnidlesnergy, particle species, momentum
etcetera. Onsager received the Nobel prize for this fortimmaf non-equilibrium transport.

We can analyse further the relation betwégnand the correlator. Suppose we had in the above
derivation not multiplieds; (t + 1) with a; (t) but witha;(0). In that case, we arrive at the result:

Lij = % [(a(t+1)ay(0)) — (a(t)aj(0))] = é [(a(®aj(—1)) — (a(t)aj(0))]

where we have used time translation symmetry.
Now we approximate finite differences by time derivatives:

Ly i (a(0) = [ @a0) .

If we taket much larger than the correlation time, we see that

Lij ~ é/o‘” (a, (t/)aj(0)>dt/.
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11.5 Coupling of different currents

In section 11.3, we have studied linear transport of a siggmtity: either the energy or the particle
density. In this section we study the simultaneous occeraricsuch currents, which according to
the general theory may be coupled, under the restrictionttteacoupling constants are symmetric
according to microscopic reversibility. Then we analysertiation between drift and diffusion within
the context of the general formulation.

As a first example, we consider flow of energy and current aséme time. Suppose we have
a system consisting dixed scattering centres, and light particles scattering off¢heentres. The
scattering is considered to be elastic, so the energy oighe particles does not change. However,
the total momentum of the light particles changes at thastotis and is absorbed by the scatterers,
which are not included in the currents under study. Examplesich systems are the scattering of
electrons off impurities in a solid, or of neutrons off heatgms.

The formalism enables us to directly formulate the curresiag the transport coefficients:

, 1 —HY\ .
Je = Leegd <?> +Lentd <?> ;
o —H 1

JN—LNND< T >+LNED<T>.

Microscopic reversibility (the ‘Onsager relation’) tells thatLyge = Len. Thermal conductivity is
the process which takes place when there is no particlerduiféis implies that

—H 1y _
LNND< T >—|—LEN|:| (T) =0.
Substituting this into the equation for the energy curresgt,obtain

jE(I’,t) = (LEELNN_LﬁE) aT.

T2LnN

We see that, even when there is no net flow of particles, thetiag are allowed to move alters the

thermal conductivity
1

T T2
with respect to that found in section 11.3.

KT (Leelnn — L&)

We now turn to a problem in which there is only a single currevtiich now is driven by the
chemical potential and by en electric field. The flowing qitgris the charge, and the current is the
familiar electric current. If an electric potential can kensidered to be more or less constant over
the subvolume, the energy levels will be shifted by that piiee For the particles, this effect is
indistinguishable from an shift of the chemical potentiddieh in the grand canonical ensemble is a
kind of ‘zero point’ energy which is assigned to every paetid-rom this we infer that

Js
M:_T% :M0+eq)7

wheree is the charge of the particles,s the number densiti /V andsis the entropy densit$/V .
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The current which we calculated in section 11.3 can diresgtign to be modified:

. e L Lnn @ uo(r,t L
Je|(r,t):—?LNNDuo(r,t)— TNNDd)(r,t):—eg%Dn(r,t)Jr TNN

wherekE is the electric field. We see that the current is composed dff@sive part, equal to that
found in section 11.3, anddhift part which is caused by the electric field.

In a stationary system, the density will be uniform, and tr& ferm vanishes. This then leads to
Ohm’s law:

E

€LnN

We see that conductivitg = ezLNN/T. In section 11.3, we have seen that

ou
D= %LNNa
so that we have )
D— 0—I;Tae| /€,
For an ideal gas, we have
o _ keT
on n’
which leads to 1

This is an example of akinstein relationwhich between the diffusion constabtand a transport
coefficienta. Note that this is a striking result: the way in which pasgglcan diffuse through a
medium determines their behaviour under a driving forcepetely. This can even be put on a more
general level: the transport coefficient is related to gesson (the current generates heat through the
resistivity of the material), whereas the diffusion telisshow much the particle positions fluctuate in
equilibrium. There exists theorems which establish gémelaions between equilibrium fluctuations
on one hand, and transport phenomena on the other — they gotliechame diluctuation dissipation
theorems

11.6 Derivation of hydrodynamic equations

In this section, we derive hydrodynamic equations. Thesatians describe the flow of a fluid. We
confine ourselves to the simplest case of isotropic fluidssisting of structureless patrticles (i.e. no
electric or magnetic dipoles or charges). The archetypicatirial is liquid argon. During the flow,
the particles will collide and exchange energy and momeni¥mhave, however, at these collisions,
conservation of momentum and energy (in addition to théalrparticle conservation: the particles
do not undergo chemical reactions).
Mass conservation is expressed by the relation
dp(r,t)

wherep is the mass density. The current represents the averagemuaftthe particles. We call the
average velocity in a small subvolurmewhich is an intrinsic quantity. In terms of, the mass flow
isj = pu, so we have

ap(r,t)

T +0Op(r,tu(r,t)] =0.
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Working out the gradient, we see that

7}
—p+pD-u+(u-D)p:0.
ot
Now we consider the momentum flow. The momentum densipguis The conservation of the

a-component of the momentum is expressed by

JdpUy
it + %dﬁﬁaﬁ =0.

Here,Z is a tensor containing the viscous forces which change threentum.
Writing out the first term and using the mass conservation wsnobtain

Jugy
ot

p —ua[pD-u+(u-D)p]+Zdl39?aB:0.
B

After some manipulation, the second and third term of thisagiqn can be rewritten to arrive at

Jdu
P 0: +p%(UBdﬁ)Ug — %dﬂ(puauﬁ)—k %0&@0{‘3 =0.

The quantitypu, Ug is the flow along the Cartesian directifrof the a-component of the momentum.

Now consider a small volumé within the fluid. The flow of momentum across the boundaries of
this small volume determines the rate of change of the mameiriside this volume. But the rate of
change of the total momentum is the net force acting on thewel Therefore we have

/Spuor %uﬁdaﬁ = /VaB (puqug) d =F,

whereSis the surface bounding; dais a outward normal vector to the surface and we have used the
divergence theorem to get the second experession. We sd¢bdharm occurring in our momentum
conservation equation is simply the force. The effect of rantam flow across the boundary is called
the pressure Therefore pu,Ug is called the pressure tensor, which, in equilibrium, hasféinm

pUqUg = Pdyp

whereP is the scalar pressure for the isotropic fluid.

Now we are left with the viscous tensef,g. Based on the general theory, this must be driven by
the affinity of the particle number, momentum and energy, ithay u, T andu,. We first make the
assumption that our fluid isotherma] i.e. the temperature does not vary in space. Furthermore we
assume that the main contribution to the momentum is due aih affinity, that is, tal,. Finally,
we should construct”’, g such that it be isotropic and symmetricanand8. This leads to the two
possibilities

0yp(0-u) anddgug + dguq.

Both have their own transport coefficient, which are callsdosities
Usually, the first of these is replaced by the linear comiminat

1 1
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Now we can write down the conservation equations for the nmbame:

Jdu 1 n_» 1/n
— +Uu-Hu+-0P=—=-0%U+— (= O(d-u).
at+( )+p 5 +p(3+Z) (O-u)
This is the Navier-Stokes equation for the momentum flow. dodyapproximation, we can pi
equal topksT so that this turns into a closed equation.
The flow of entropy and energy can be expressed in a separséay using a similar analysis.
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Fluctuations and transport phenomena

Up to this moment, we have restricted ourselves to equilibrphenomena. In this chapter we shall

concentrate on fluctuations from the equilibrium phase anttansport phenomena. The latter are

intrinsically outside of the domain of equilibrium phenamae transport does — on average — not occur
in equilibrium.

12.1 Motion of particles

Particles move under the influence of their counterpartse fbtion of a particle can be split into
three contributions:

e A motion caused by an external force acting on the partidiéss is called thalrift.

e A motion on top of the drift, and which is the result of thermfiattuations. This motion occurs
also in equilibrium.

e Adrag induced by the interaction of a particular particleéhwthe other particles.

The main message of this chapter is that these three typest@nrare strongly related. Therefore,
from studying the fluctuations in an equilibrium system, \@a deduce the transport properties, which
are clearly the non-equilibrium properties of the system.

If a system is moved out of equilibrium, it will take some tirhefore equilibrium is restored.
Initially, a local equilibrium will be realised. This means for example that if we stir ailiun a
small subvolume of the liquid, the particles will be distribd according to the distribution:

P(v) = exp[-m(v—u)?/(2ksT))],

whereu is the average velocity (also called tivind velocity of the subvolume. Two neighbouring
subvolumes will have different average velocities, butéfwait long enough, these velocities become
equal.

We now focus on dilute systems, i.e. systems in which theéghestmove freely most of the time
and experience collisions with their counterparts every aad then. In this context it is useful to
speak of thenean free path, and of thefree flight time 1, which are related according to

I =(vhT,

where(]v|) is the average absolute velocity. The meaning of these ifjearis related to what happens
between two collision events: the average time between olisions is the free flight time, and the
average distance a particle travels during that time is tbemfree path.

109
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Figure 12.1: The volume a particle ‘sees’ when travellimgptigh the system.

The free flight time can be calculated if we know the scattgdross section of the particles in the
system, their density, and their average velocity.

A particle ‘sees’ other particles within a tube of cross ecequal to the scattering cross section
Oscatand of length(|v|)t. The average number of encounters is then given by the vobirtiés tube
times the particle density — see figure 12.1. From this we iifectly that

t t 1

T=—= = .
N (|Vrel])tOscall  (|Vrel|) Osca

In this formula, (|viel|) is not the average velocity, but the averaghative velocity between the par-
ticles, and we should correct for this. If we carry out therage for relative velocities, based on a
Maxwell velocity distribution, we find

{|Vrell) = V2(V])
and we have
-+
\/§<M> Oscall

12.1.1 Diffusion

In agreement with what has been said in the previous seatiencan distinguish two mechnisms
for transport of particles through a gas or liquid: diffusiavhich is caused by thermal fluctuations
kicking the particles in arbitrary directions, addft caused by an external force. First we focus on
diffusion.

We shall derive the diffusion equation for one dimension. aitigle is placed on thg-axis and
performs a step in some random direction at regular timevale We want to evaluate the probability
p(x,t)dxof finding the particle at timein the intervaldxlocated ak. To that end, we set up a Master
equation similar to that introduced in connection with therie Carlo method. We take the step size
equal toa and the time step equal to The probability that at each time step a jump to the left or
right is made, is calledr, and the particle will remain at its position with probatyilii — 2a. The
probability density satisfies the following equation:

2
p(xt+h)—p(xt) = alp(x+at)+p(x—at)—2p(x 1) ~ “azagi(x?t)’
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where we have taken the smallimit in the last expression. Taking albsmall, we may approximate
the left hand side by the time derivative in order to obtain:

dp(xt) _ [ 2%p(x1)

ot 0x?
whereD is thediffusion constantwhich can be seen to take on the value
2
a
D=a—.
h
By interpretinga as the mean free path ahds the free flight time, and taking = 1, which seems
to be the natural choice for this case, we have
|2
D=—.
T
We can also calculate tHiux, which is the net number of particles moving from one positio

its neighbouring position. The flow to the right is given by

aap(xt)
and that to the left by
aap(x+at).
The factorsa in front of thep’s in these equation come from the fact tlpats in fact defined as the
number of particlegper unit length Keeping the same convention in the derivation of the diffius
eqguation does not alter the result, as an extra facteould have to be included in both the left- and
right hand side.
Therefore, we find for the flux:
pxt)—p(x+at) =~ adp  dp

J=0a h ~ 0 ek~ Pax

which can be generalised in 3D to

J=—-D0Op(r,t).
This relation is known ag&ick’s law of diffusion If the diffusion constant depends on position, the
diffusion equation reads

ap(r.,t
% +0(D(r)0) p(r,t) =0.
The solution to the diffusion equation with initial conditi that therds a particle at the origin at
t=0,is
Xt) = ———g /(D)
pixY) =

The shape of this distribution is Gaussian at all times, withidth which grows proportional tg't.
Fort = 0O this reduces to a delta-function. It is obvious that thetivghould increase in time as the

position of the particle should become more and more urioertahe course of time. In 3D, we have

1 _r2/(4Dt)
32°
(4nDt)
We can calculate the average square displacement of algdrtione dimension (the average
displacement is obviously zero because of symmetry):

<(Ax)2> = 2Dt,

p(r7t):

in 3D this becomesbt.
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12.1.2 Thermal conductivity

In order to study the transport of thermal energy, we comsidgystem like in the previous subsection,
but with a temperature gradient in ti@xis, which is realised by putting the system in between two
planes perpendicular to tlzeaxis, which are kept at different temperaturésandTo.

Now let us consider a plane at heightParticles will cross this plane, coming either from above
or from below the plane. The average height at which thegiclear last collided was

h=¢2,
%
After this last collision, the particles have an energy Wwhi the average energy for the height
v, /v. The flux of energy through the plane at heigl therefore given by

jE= /n(v)vzs (z— E%) dv.

whereg(z) is the average energy of a particle at hegHerforming a Taylor expansion feraround

zgives
- v,de(2)] 5
je _/n(v)vZ [s(z) EV e }d V.
Now we may substitute the Maxwell distribution fiofv) to obtain, after some manipulation:

, 1 de(z)
=—= l .
Ie 3n<v> dz
Now we writee = cT wherec is the specific heat per molecule. Then we find for the energy flu

.1 dT(2)
JE_—§n<V>€c .

and therefore, the thermal conductivity is given by
~ ncl{v)
Ky = —3—.

12.1.3 Viscosity

Now we consider the transport of momentum tangential to mepéross that plane. To fix the ideas,
imagine a constartplane. We want to study the transport of momentynacross that plane. This is
given by

Similar to the previous section, we note that the average entum of the particles moving across, is
Vz
=my(z— E—) .
pe =y, (2 (-

Inserting this into the above expression Ry, we obtain

Pe= / m(ux(z) ﬁdw(Z)) n(v)vd3y,

v dz

which directly leads to
dw(2)

Pe=— .
Xz dZ

nm(v) ¢

Therefore, we find for the viscosity
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12.2 The Boltzmann equation

We now turn to a central topic in nonequilibrium statistioachanics: th8oltzmann equatianThis

is a more formal and consistent formulation of the ideagdbin the previous section. The Boltz-
mann equation describes the motion of a collection of degimn a hydrodynamic cell: that is, a cell
which contains many molecules but which is much smaller tharscale over which hydrodynamic
quantities vary appreciably. The central quantity is theber of particles in such a cell of sizr
and velocity within the volume®v in velocity-space. This quantity is called tHistribution function
f(r,v,t):

f(r,v,t)d3 d3v = number of particles withinl®r and velocity withind®v.

If we consider the dilute limit as in the previous section,asasider the particles as moving freely for
some average timeand then colliding with each other. First we consider thestjae howf changes
with time if we disregard the collisions.

There are two issues which we have to consider: first thegbestmove in space due to the fact
that they have a velocity and they change their velocity &salt of some (external) force which acts
on them. Do not confuse this force with the interactions leefwthe particles: we save those for the
collisions which are not taken into account til further weti The change of position and speed has
a direct effect onf. However, the volume elemendSr andd3v may also change in time. However,
as the particles move independently of each other, eacitlpadsg subject to a Hamiltonian evolution
which, by Liouville’s theorem, keeps the volume elemetitd3v constant.

Therefore we have

F
f(r(t+At),v(t+At),t +At) = f(r +vAt,v(t)+EAt,t+At) =
F
f(ryv,t)+v-O f(r,v,t) + —- O, f(r,v,t) + if(r,v,t).
m ot
If we are in equilibrium,f only depends on andv, and not explicitly on time. In that case we have
v-[Oy f(r,v,t)+5-D\,f(r,v,t) =0,

which, usingF = [0,V (r) allows for a solution

f(r,v) = exp{—B {m_zv? +V(r)} } ,

which does not look too unfamiliar.

The interactions between the particles must also be takeragtount. This is done in the dilute
limit, in which the particles collide every now and then. Tdwlisions will result in a loss and an
increase of the distribution functiof(r,v,t): a collision atr may have a particle with velocity as
an end product, or a collision may change the velocity some other velocity.

For the frequency of occurrence of a collision we have ddrive

1
T=—-—,
njv|o

whereg is the total collision cross section. Now we need a more rdfegression, which includes
the in- and outgoing velocity. This means that we must repthe total collision section by the dif-
ferential one, which depends on the difference betweemthenid outgoing angle. More specifically,
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if we travel along with one of the incoming particles, thigtpdes is a target at rest and we see the
other particle hitting it.Q = (&, ¢) are the polar angles of the difference between in- and ouggoi
velocity of the incoming particle.

More generally, we introduce a transition amplitude

P(v1,V2,V],V5)

which gives us the probability density thgiventwo particles which collide with incoming velocities
v1 andvs, the result is outgoing particles with velocitigg andVv’,. This probability density must
satisfy several requirements:

e Time reversal symmetry:
P(v1,V2;Vy,V5) = P(=V], —V5, —V1,—V5).

As the probability distribution is in general symmetric endeversal of all velocities (space in-
version symmetry), we also may write

P(v1,V2,V],V5) = P(V],V5,V1, V7).

e P should respect the general conservation laws for momentaheaergy. Hence, if the particles
all have the same mass
Vi4V2 =V 4V

and
V4 V2 =Vi4Va.

Using
2(V3 +V3) = (V1 +V2)® + (V1 — V),

which also holds fow} andvj,, and using momentum conservation, we may reformulate gnerg
conservation as
V1 —Vo| = [V] —V5|.

Therefore the transition probability dens®fvi,Vv»,V],V5) vanishes unless the velocities satisfy
momentum and energy conservation.

We first analyse the loss of the distributidiir,v,t) due to collisions occurring in a small time
intervalAt. This loss is caused by collisions with particles with a e#lov, atr. The probability that
two such particles meet in this time interval is given by

f(r,v,t)f(r,va,t)|v—vy|At.
Therefore, the loss term due to the collisions can be writen
| (v) = Atf(r,v,t)/ f(r,va, )|V —Va|P(V,v2;Vh,V5) d3vo d3V; d3Vs.

The gain term td'r,v,t) due to the collisions results from collisions of particlahvany velocities
v1 andvy which results in one of the outgoing particles having endcigy v. A similar analysis as
for the loss term results in a gain term

I, = At/ f(r,vi, ) F(r,vo,t) vy — va|P(va,v2;v,vh) d3vy divy dPvs.
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To be able to combine this expression conveniently Withve use time reversal symmetry to swap
the arguments of the collision distributidhand rename the integration variables to obtain

|, = At / f(r v, 1) F(r,vh, 1)V —Va|P(v,v2; Vi, V5) d3v; d3V, dBvs.

Combining the loss and gain term, we arrive at the final fornthefBoltzmann equation, including

collisions:

17}
Ef+v-|]rf = lcan(f),

with
leoll = /\V—VZ\P(V,vz;v’l,v’z) [£(r,va,t) f(r,vh,t) — F(r,v,t) F(r,vo,1)] d®v V) dvs.

It is important to realise that in this derivation, we havewsed that the probability for two
particles with velocityv; andvs,, is given by the product of the single particle distributfonctions:

Prob(r,vi,vo,t) = f(r,vi,t) f(r,va,t).

This implies a neglect of velocity correlations: a probiépitilepending orv; andv, which cannot be
written as the above product is excluded. This implicit agstion goes by the nanmolecular chaos
Note furthermore that the collision term does not affectribenber density — it only influences
the velocity distribution.
We end this section by writing up the Boltzmann transportagigu, which includes the collision
term derived above:

17} 17} F 0
Ef(r,v,t)+v-Ef(r,v,t)+a-mf(r,v,t):/|v—v2|P(v,vz;v’l,v’z) [f(r, v, t)f(r,vh,t) — f(r,v,t) f(r,vp,t)] d®

12.3 Equilibrium — deviation from equilibrium

For equilibrium we now that, in the absence of the collisiemt, the local distribution function is the
Boltzmann distribution. If we add the collision term, it st not affect the equilibrium distribution.
That this is indeed the case follows from the fact that

f(r,vy, ) f(r,vo,t) — f(rv,t) f(rvo,t) =
n?(r) {exp[—m(v’ﬂv@) /(ZkBT)} —exp[-m(vZ+v3) /(2kBT)]} =0,

where the last equality follows from energy conservatiothatcollision.
If we deviate from equilibrium, the collisions should drive back to equilibrium. This process is
expressed in terms of a new quantity which is commonly refered to as the Boltzmann function.
The Boltzmann function is defined as

H(t):/f(r,v,t)lnf(r,v,t)d3rd3v,
It is clear that this quantity is related to the entropy by

H=—ksS

lysually people vievH as a character of the latin alfabet. Boltzmann however useteek capital form of eta].
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The quantityH is a function of time only, so we may calculatél /dt. We can now evaluate

dH  of 3. .3
T E(lJrInf)drdv.

From now on we shall use the obvious abbreviations:
f(rove,t)=f;  f(rvi,t) = fy
and so on. Furthermore
Vi —Vo| P(vy,Vo — V], V5) = P(1,2 — 1, 2).
We then have, after substituting Boltzmann’s equation éneuation fodH /dt:

dH

= —/r-mr f1[1+In fl]d3rd3p1+/l5(l,2—>1’,2’)(f1/ fy — f1£2) (1+In f1) d3rDv;

whereDv stands fod3v; d3v, d3V, d3v,.
Integrating the first term and assuming ttiatanishes if we are far away (outside the volume), we
keep only the second integral. By using symmetry under exgihg coordinates 1 and 2, we obtain

‘il_'t* _ /ﬁ(l,z,_, 1,2 (fy fo — f1f2 ) (1+In £2) r Dv.

We can add the two last expressions for the time derivatiabtain

dH [ 1
E = / P(:I.7 27—> 1/72/) (fll f2/ —_ f1f2 ) <1—|— E In fl f2> d3r DV.

As a final step, we use the time reversal symmetry propertgrdow to which the swap,2 «—
1,2 should not change the integral. This leads to another esioregor the time derivative of the
Boltzmann function:

‘jj_':' = /5(1, 2,—1.2) (fyfa— fyfy) <1+ % In fy f2/> d3r Dv.

Adding this new form to the old one leads to

d(j—T:/ﬁ(].,z’—) 1/72/)(f11f2/— flfz)éln fle

3
Dv <0.
4 fllledr V_O

The inequality on the right hand side follows from the fadttty — x) In(x/y) is always less than or
equal to zero.

We see thaH monotonically decreases. Furthermdtkis a positive number. Therefork, will
decrease in time until it has reached its minimum value. Vhige corresponds to the equilibrium
state. So what does this state look like? It is reached when

fifo = fy fy,

or,
Infi+Info=Infy +Infy.
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In a homogeneous system, the equilibrium distribution ca¢slepend on, and the last condition for
equilibrium must be satisfied for thigs being functions of the momentum coordinate. As we know
that momentum and energy are conserved during collisibisrequirement can be satisfied for any
function f of the form

_ ”
Inf(p) =A+Db p+02m,
in other words 5
_ pecP
f(p)_exp<A+b p+02m>.

This is the general form of the Maxwell distribution of a gaighwa nonzero total momentum.

12.4 Derivation of the Navier—Stokes equations

In this section we present a derivation of the Navier—Stekggtions from an approximate Boltzmann
eqguation through a Chapman—Enskog procedure.

If the particles would simply flow according to their initiaklocity, without interaction, equilib-
rium would never be reached: the role of the collisions isdtalgishlocal equilibrium that is, a
distribution which is in equilibrium in a small cell with fidevolume, constant temperature, density
and average velocity. We know this equilibrium distribution; it was derived iretiprevious section:

fe9(r,v) = f(r)exp[-m(v—u)?/(2kgT)], (12.1)

which holds for cells small enough to justify a constant ptgs. We have neglected external forces
which would change the velocities for simplicity — they canibcluded straightforwardly. Once the
liquid is in (local) equilibrium, the collisions will not @h it away from equilibrium. It can be shown
that the collisions have the effect of increasing the entropence they generate heat.

Before we continue, we note that the mass nalwhysbe conserved, whether there are collisions
or not. The mass density is found as

p(r,t) = /mf(r,v,t) d3v. (12.2)

Its evolution can be calculated by integrating the Boltzmaguation, multiplied by the single particle
massm, over the velocity:

MJr/mv-Drf(r,v,t) d3v:/<mﬁ> dv. (12.3)
ot dt collisions

The second term of this equation can be writteriJag(r,t) wherej denotes the mass flux, or mo-
mentum density, of the fluid:

jir,t) = /vmf(r,v,t)d3v: pu, (12.4)

whereu is the average local velocity. The collisions change theaig} distribution, but not the
mass density of the particles — hence the right hand side208) ¥ranishes and we obtain the familiar
continuity equation:
op(r,t .
%m-m,t):a (12.5)
Another interesting equation describes the conservatiagnamnentum. We would like to know

howj(r,t) changes with time. This is again evaluated straightforlyasg multiplying the Boltzmann
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eqguation by and integrate over the velocity. Using the indiceandf3 for the Cartesian coordinates,

we obtain .
e +/mva2v303 (r,v,t)d /mva <—> dy, (12.6)
collisions

wheredg denotes a derivative with respect to the coordingte For the right hand side, a similar
statement can be made as for the equivalent term in the maatiaaq although individual particles
involved in a collision change their momenta, tbal momentum is conserved at the collisions. After
thus putting the right hand side to zero, we write (12.6) iorshand notation as

Oja
ot

where we have introduced the momentum flow tensor

+0BQZO,B 0, (12.7)

Pap = /mvava(r,v,t)d3v, (12.8)

and where we have used the Einstein summation conventiohioghwepeated indices (in this ca8g
are summed over. The derivative with respeatgtds in our notation denoted .

Assuming that we are in equilibrium, we can evaluate the nmtoma tensor by substituting for
f(r,v,t) the form (12.1):

Pop = / MV, VaN(r) exp[—m(v —u)?/(2ksT)] d®v = p(r) (ks T 8ap + Ualg) . (12.9)

This result can be derived by separately considenirg8 anda # 3, and working out the appropriate
Gaussian integrals. Noting thaks T equals the pressufg! we arrive at the following two equations:

o (r.)
d(pu) _ -
T + 0y - (Pl 4+ puu) = 0 (momentum conservation). (12.10Db)

= 0 (mass conservation); (12.10a)

Using the first equation, we can rewrite the second as

au(r,t) B
ot +[u(r,t)-Ou(r,t) = —

1
YD) OcP(r,t). (12.11)
The equations (12.10a) and (12.10b) or (12.11) aré=thler equationdor a fluid in equilibrium.

When the fluid is not everywhere in local equilibrium, thelistdns will drive the system towards
equilibrium — hence their effect can no longer be neglectdd. mentioned above, the additional
currents which arise on top of the equilibrium ones increhseentropy and are therefore called
dissipative Hence these terms describe the viscous effects in the fluid.

We now split the distribution function into an equilibriumdha nonequilibrium part:

f(r,v,t) = f89r,v) + "9 v t). (12.12)

The equilibrium term satisfies (12.1).

IHere, we consider the fluid as an ideal gas; a realistic esuafistate may be used instead.
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How can we represent the effect of the collision term? Therani approach due to Maxwell,
which is based on the assumption th#itrelaxation processes have the same, or are dominated by a
single, relaxation time. In that case:

(5  —-dedomM T (12.13)
collisions ' |

dt T T

As mentioned above, the collisions do not change the masseoation equation, which should
always be valid. The equation for the flux will however acquircontribution from the nonequilibrium
part of the distribution function, as we shall see. The massdan still be written agpu. Moreover,
the collisions leave the total momentum unchanged.

The fluxj occurring in the mass conservation equation also occurgimbmentum conservation
equation. In this second equation, the momentum fiepg occurs, which we have calculated above
assuming equilibriumlf we consider the evolution of this flux using the Boltzmasquation, we see
that the collision effects enter explicitly in this momemtdiux.

To find the lowest-order contribution to a systematic exjmanef the density, we replageon the
left hand side of the Boltzmann equation by its equilibriuension:

afea(r,v) froneqr,v,t)

O f=—-— Y177 12.14
ot Vo T ( )

This is anexplicit equation for the nonequilibrium term. It can be shown tha& th an expansion
in the parametef/L, where/ is the mean free path, ardis the typical length scale over which the
hydrodynamic quantities vary. Note that if we integrate #mjuation over the velocity, the right hand
side vanishes as the collisions do not affect the mass gensit

The momentum flux is defined in (12.8). This is calculated ftbmdensityf(r,v,t) and it can
therefore be split into an equilibrium and nonequilibriuartp The equilibrium part was calculated in
Eqg. (12.9), and the nonequilibrium part will now be calcethtising (12.14):

none ' 3 ' dfea
'@aﬁ q:/mvavﬁn”"”eqd V=—T U MV Vg ot
where we have again used the notatigrfor a derivative with respect to thee-component of . Before
we proceed to work out (12.15) further, we note that the ne@@%”eqhas an important property: its
trace vanishes. This can be seen by writing out this trace:

d3v+ / MgV - Oy 93| (12.15)

Z phoned_ /.vzfnoneo(r,v,t)d3\/. (12.16)
a

Realizing that this expression represents the change ewvgrage kinetic energy due to the collisions,
we immediately see that it vanishes as the (instantaneollgians leave the total energy invariant:

Trgphoned_ (12.17)

For the calculation of the nonequilibrium stress tensor, (£8.15), we use the following equa-
tions, which can easily be seen to hold for the equilibriustrdiution:

/mfeq(r,v)d3v: p(r); (12.18a)
/. M(Vg — Ug ) (Vg — Up) £e9(r,v)d3v = p%@w = Pdyp; (12.18b)

. 1
Ug = — Z UgOgUg — E(dap); (12.18c)
B
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where in the last equation it is understood that the velxitire those evaluted for the equilibrium
distribution: this equation is the Euler equation, (12.Whjch can also be written a&@g% (we use

d; to denote a partial derivative with respect to time).
We first work out the first term in the square brackets on tha tignd side in (12.15). After some
manipulation, using Egs. (12.9), (12.10a) and (12.10l,aan be written as

& Pqp = 0 (POyp + pUalp) =
4

The second term in the square brackets of (12.15) can bewritsing the quantitwy = Vg — Ug, in
the form [see also (12.9) and (12.18b)]:

/(ua +Wq ) (Ug +Wpg) (Uy +wy)3,n°%(r,v) d3v=
9y (UaUgUy + Ug Py + UgPds, + U, Pd,p) . (12.20)

The second term can now be worked out and yields

> [Ualglydyp + puguy(GyUa) + PUqly(dyUg) + PUalp (dyly)+
v

Adding the two terms of Eq. (12.15), many terms occuring al&st equations cancel — the ones that
remain are [(12.19) and (12.21)]:
P(dpUq + dalig) + Oap {P+ 3 [uy(9,P)+Pauy] } : (12.22)
Y

The terms _
P+ Z uy(9,P) (12.23)
y

can be calculated using (12.18b) and the equilibrium distion. When we write this term out, we
obtain, again wittwg = vq — Ug:

0
E/mw’-f d3v+;uy0y/mwzf Py =

of 3y 1 noneq~3
/mw2 (EJF;uyayn) d v_?/mwzf Py (12.24)

This is the trace of the tensor 1
- / mwg W F1OMeAgRy, (12.25)

Now we use the fact that Z?"°"®dvanishes. This can only happen when the trace occurring in
the last equation cancels the trace of the remaining terrtiseiexpression fo?"°"¢4 This tensor
must therefore be

phoned_ _pr <0auﬁ + 0gUq — §5aﬁayuy> : (12.26)
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Using this, we can formulate the momentum conservationtemyavith v = tkg T /m, as

Ju 1 5 1
— +Uu-Ou=-0P+vOu+ =vd(O-u). 12.27

The mass conservation equation and the momentum conseneduation together are insuffi-
cient to give us the four unknown fielgr, u andP. We need therefore an additional equation, which
may bep = constant for an incompressible fluid, B p for the isothermal case. Note that the case

wherep = const also implie§l- u = 0 from the continuity equation, which in turn causes thetiash
in the last equation to become negligible.
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Nonequilibrium statistical mechanics

13.1 Langevin theory of Brownian motion

In this section we consider the Langevin equation, whicleidess Brownina motion on a microscopic
level. Consider a solution containing polymers or ions Whice much heavier than the solvent
molecules. As the kinetic energy is on average divided dgoakr the degrees of freedom, the ions
or polymers will move much more slowly than the solvent moles. Moreover, because of their large
mass, they will change their momenta only after many coltisiwith the solvent molecules and the
picture which emerges is that of the heavy particles fornairsystem with a much longer time scale
than the solvent molecules. This difference in time scafelmemployed to eliminate the details of
the degrees of freedom of the solvent particles and représein effect by forces that can be treated
in a simple way. This process can be carried out analyticatigugh a projection procedure but here
we shall sketch the method in a heuristic way.

How can we model the effect of the solvent particles withakirtg into account their degrees
of freedom explicitly? When a heavy patrticle is moving thghuhe solvent, it will encounter more
solvent particles in the front than in the back. Therefdne,dollisions with the solvent particles will
on averagehave the effect of a friction force proportional and oppmsi the velocity of the heavy
particle. This suggests the following equation of motiontfe heavy particle:

m% (t) = —w(t) = F(t) (13.1)
wherey is the friction coefficient and- the external or systematic force, due to the other heavy
particles, walls, gravitation, etc. The motion of fluid pelgs exhibits strong time correlations and
therefore the effects of their collisions should show tiroerelation effects. Time correlations affect
the form of the friction term which, in Eg. (13.1), has beeketadependent on thiastantaneouse-
locity but which in a more careful treatment should includetcibutions from the velocity at previous
times through a memory kernel:

m%(t) = —/_tmdt’ y(t —t)v(t") + F(t). (13.2)

This form of the equation must also hold for lighter particlen order to avoid complications we shall
proceed with the simpler form (13.1). In the following we khastrict ourselves to a particle in one
dimension; the analysis for more particles in two or threeadisions is similar.

Equation (13.1) has the unrealistic effect that if the exdkforces are absent the heavy particle
comes to rest, whereas in reality it executes a Browniananofio make the model more realistic we
must include the rapid variations in the force due to thedesq collisions with solvent particles on
top of the coarse-grained friction force. We then arrivenatfollowing equation:

m%’(t) — W) +F (1) £ R() (13.3)

122
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whereR(t) is a ‘random force’. Again, the time correlations presenthia fluid should show up in
this force, but they are neglected once more and the foragjed to the following conditions.

e As the average effect of the collisions is already absorhelé friction, the expectation value of
the random force should vanish:
(R(t)) =0. (13.4)

e The values oR are taken to be uncorrelated:

(Rt)R(t+T1))=0 for T >0. (13.5)

e The values oR are distributed according to a Gaussian:

PIRY)] = (22 (R?)) Y2 exp(—R?/2(R?)). (13.6)

Now let us discretise time. All these above assumptions lsan be summarised in the following
prescription for the probability for a set of random force®tcur betweety andt;:

1
PR (t))to<t<t, ~ eXp<—§]/t dt Rz(t)> (13.7)
with g a constant to be determined.
In the discretised time case, we may assume that the randomifoconstant over each time step:
at stepn, the value of the random force i&,. For this case, the correlation function for tRereads

JdRRy 1. Ry exp(— 4 31, REAL) RiRy
(RaRm) = (13.8)

[dRdRy41...dRy exp(—% Sm, R,ZAt>

which yields the value 0 fon # m, in accordance with the previous assumptions. i=erm we find
the valueg/At, so we arrive at

(RaRm) = Aﬂtanm- (13.9)
For the continuum casit — 0 (13.9) converges to th&distribution function
(ROR(t+1)) =0qo(T). (13.10)
We now return to the continuum form of the Langevin equatith ) withF (t) = 0. This can be

solved analytically and the result is

t
v(t) = v(0)exp(—yt/m) + %/0 exp[—(t—1)y/mR(1)dt. (13.11)
Because the expectation valueR¥anishes we obtain
(v(t)) = v(0) exp(—yt/m) (13.12)

which is to be expected for a particle subject to a frictioncéoproportional and opposite to the
velocity.
The expectation value of is determined in a similar way. Using (13.10) and (13.3) wd fin
q

<[v(t)]2> :v%exp(—Zyt/m)+Wm(1—e*2Vt/m), (13.13)
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which for larget reduces to q
2 —_——
<[V(°°)] > = m (13.14)
According to (13.11)y depends linearly on the random fordg($) and as the latter are distributed
according to a Gaussian, the same will hold for the velocithie-width is given by (13.14), so we
have
ym 12 2
P = (%2 ) exd-muty/a (13.15)
for larget. This is precisely the Maxwell distribution if we write
q=2ksTy, (13.16)

so this equation defines the valueqafecessary to obtain a system with temperalurtn section 12.4
we shall discuss Langevin types of equations in a more fowag] using the Fokker-Planck equation.
The velocity autocorrelation function can also be obtaiftech (13.11):

(VO)V(t)) = (v(0)%)e /™. (13.17)

The absence of a long time tail in this correlation functiefiects the oversimplifications in the
construction of the Langevin equation, in particular theealze of correlations in the random force
and the fact that the frictional force does not depend ontitstdry’ of the system.

The results presented here are easily generalised to naretie dimension. However, including
a force acting between the heavy particles causes problethis iforce exhibits correlations with
the random force, and Eg. (13.16) is no longer valid in thaeceuch correlation effects are often
neglected and the systematic force is simply added to tbkofni and the Langevin term.

A further refinement is the inclusion of memory kernels in theees, similar to the approach in
Eg. (13.2). In that case, the random force is no longer uptaiad — it is constructed with correlations
in accordance with the fluctuation-dissipation theorem:

(RO)R(t)) = (V) v(1). (13.18)

However, this equation is again no longer valid if exterroatés are included.

13.2 Fokker Planck equation and restoration of equilibrium

In the previous section we have formulated an equation forgiesparticle which diffuses and which
feels a forceF which tries to establish some distribution which differsrfr the homogeneous one.
This force may be derived from a stationary potential. Tladiatary solution for the velocity equa-
tion, in which the random force is neglected, is

V=——

y
that is, the force tries to increase the velocity along tmedalirection, and the friction counteracts this
and in the end there is a balance between that friction anfbtbe. We now establish an equivalent
of the diffusion equation which includes the effect of a tiyforce. The flux due to diffusion is

)

jair = —DOp(r,t),
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and the flux due to the driving force, drift flux is given by

. F(r t
Jdriﬂ:p(rat)%-

A well-known example of the last relation @hm'’s law where the flux (current) is linearly related to
the force (which is proportional to the applied electricd)el

The diffusion equation can be derived from the requiremieait the flux through the surfadeof
a volumeV equals the change in density inside that volume:

d .
a/P(rJ)d?'r :_/Jtotal'dA
v A

whereA is a unit vector perpendicular to a surface elemkhtUsing Gauss’, or divergence theorem,
we can rewrite the right hand side as a volume integral:

17} )
/0—p(r,t)d3r:—/D-Jtota|d3r.
v ot V

As this must hold foenyvolume within the system, we obtain thentinuity equation

0 :
Ep(r,t) + 0O jiotal(r,t) = 0.

Now we can substitute the expressions above for the diffusind the drift flux:

%p(r,t) =0 {DD— ;] p(r,t).

Recalling the relation

=7

from the previous section, we have

%p(r,t) =0-D[O0—kgTF]p(r,t).

This equation is called theokker—Planclkequation. We can check whether this equation makes sense
by investigating whether, in a closed system with some eatepotential, the density will be dis-
tributed according to the Boltzmann distribution. Thisnsiout to be the case, as is clear from the
fact that for

Opo(r)

"= ke Toolr)

the Fokker—Planck distribution will yield a stationary tdisution po(r) which is realised for long
times. This can be checked by putting the left hand side oftii&er—Planck equation to zero, and
checking that the right hand side vanishes for

p(r,t) = po(r).
If we now substitute fopg(r) the Boltzmann factor:

po(r) = exp[-V(r)/(ksT)],
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and realise that for
F(r)=—-0V(r),

we see that indeed the Boltzmann distribution is the costationary distribution. In fact, this result
tells us again that the relation= kg T /D must be valid: if the proportionality factor would be dif-
ferent, the Boltzmann distribution would not be found asgtagionary distribution. This relation is
known as theEinstein relation

Using the expression for the drift current, we can calcuiaesport coefficients. First we analyse
electric transport which is due to the acceleration of chatgy an electric field. There is a stationary
situation when the diffusion current cancels the drift eatr For an electric field along thxedirection:

dp(r)

dx ’
The electric field is minus the gradient of the potentidl), which determines the charge density
p(r):

Jaritt = €D

p(r) = poe eV (laT)

)

hence
do(r) _ eb& ")
dx  ksT

from which we find for the conductivity

_ eDp(r)
= T
This is essentially the famow3rude formula The expression for the electric drift current:

= eExp(r)
y

gives the same result provided that
D 1

Y
in accordance with what was found above. It should be notatittie above derivation is performed
in the context of a stationary equilibrium state, where teeaurrent should be zero indeed. If the
boundary conditions are such that there is a source and(thhaicontacts), then a net current survives.

13.3 Fluctuations — the Wiener-Kintchine theorem

In our discussion of the Langevin equation, we have encoedta fluctuating quantity: the random
force. There we have assumed that this random force had eactimelation. In this section we shall
study fluctuating quantities which are correlated in timanslder a quantityA (you may think of

a more realistic random force in the Langevin equation) tviias an average value of 0 but which
fluctuates in time. The autocorrelation function is defingd a

K(s) = (A(DA(t +9)) = Tlirllo% OT ADA(t +s)dt.

This is a time averaged quantity. The quankts) satisfies the property
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as can readily be checked by inspecting its definition.

We expect furthermore that, sin¢A(t)) = 0, the autocorrelation correlation function vanishes
for large values of, and that it will attain its maximum fos = O (then the integrand in the average
is always positive). It turns out that the autocorrelationdtion is intimately related to the so-called
spectral densitydefined in terms of the Fourier transform Afin the time domain. The latter is
defined as

Alw) = %/OT At)gdt.

where the limitfT — o is implicitly assumed — a convention we shall adhere to framv on. Usually,

A'is such thatA? is related to some energy. For example, in the case whésea component of an

electric field,A? is the contribution of that component to the energy stordtiémscillating field.
Thespectral densityf the variableA is defined as

S(w) = (A(WA (w)).

We can evaluate the right hand side as follows:

S(w) = % < /0 ! /O ! A(t)ei‘“tA(t’)e‘i‘*"’dtdt’> _ % / / (ADA(+5)) €499 gtds

where the shift of the integration variable was made pos$ibtause the quantity in brackets is known
to beK(s), which has a finite width. If we take the limit far — oo, we find

T/2 —1 WS —
S(w):/T/ZK(s)e ds=K(w).

This relation is known as the/iener-Kintchine theoremNote the absence of the factofTLin front
of the Fourier transform oK. If the width of K(s) is calledt, then the width oK (w) will be 1/1
(reminiscent of the Heisenberg uncertainty relation inmuan mechanics).

Let us now come back to the Langevin equation, but refraimfimposing a non-coherence for
the random force. The equation of motion

mv =—w+R(t)
with R the random force still holds. As we have seen, the solutidhisfequation can be written as

t !
my(t) — e /™ / /MRt )dt
0

where we have assumed that the initial velocity was zero. Weavaluate the average kinetic energy:

m () = <i —2n/m /'t eM/MR(ty)dty /t evtz/mR(tz)dtz>

2 2m 0 0

where the expectation value is over the different possiddigations of the random force.
Using the fact that
(R(t1)R(t2)) = Ke(t2 —t1),

is short-ranged so thét = t, and taking the limit of largeé, we obtain, using the variables

t1+t
T:1+2

andt =t —t1,
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e 2/m ot t P .
(Ean) = S [ & /0 & dT/K(T)dT 5/ Re(0) (1-e2n/m)
which, fort — o reduces to L
(Exin) = Z—VIZ(O).
As before, we may put the kinetic energy equakgd /2 to obtain
1 .
y= EKF (0).

As mentioned before, this friction exponent directly detigres the value of the transport coefficients,
such as the electric conductivity.

Now we shall focus on this last example, and instead ofcbthe 0 case, analyse the frequency
dependence. To this end, we replace the expectation valu&tofon which the above derivation
was based, by the autocorrelation function. We have ewaduhis function in section 12.3; the result
obtained there was

KaT yitl/m

2m

(MO)V(Y)) =

where the equipartition theorem has been used to rew#@®)) in terms ofkg T. The Fourier trans-
form of this gives us

ke T 1
V 1+ (wm/y)?*
According to the Wiener-Kintchine theorem, this is relatedhe power spectrum:

kg T 1
Y 1+ (wm/y)?

Ky(w) =

(Mw)|?) =

This formula implies that the spectrum of the current powethiced by the fluctuations, is flat, i.e. it
does not depend o for frequencies (much) smaller tham/y, which is the inverse relaxation time
of the electrons. This means that we have white noise up4dithit.

In the previous section, we have derived the result

1 -

Y= I(B—TKV(O)'

The parametey determines the transport properties, such as the conawctamparticular, we have
. E
j = nev=ne’—
y

whereE is a component of the electric field. Therefore, the condwstds found as

oo n& netkgT
y Kv(0)
This means that we can evaluate the transport coefficidndm the autocorrelation function for the

velocities. This is a striking result: the autocorrelatfanction is a property of thequilibriumsystem
— from this, we can evaluate the transport coefficient, wisa@mnon-equilibriumproperty.
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The Wiener Kintchine theorem has an important applicatioelectric circuits. Consider for
example an inductance in some electric circuit. The eleemiergy stored in the inductance is given
by the expression

L
Eel= =12
el 2

It is generally assumed that thatal energy of the circuit can be written as
Etota = Eel(1) + other terms

where the ‘other terms’ do not depend lonThis means thdt acts as a generalised coordinate of the
Hamiltonian, and it should therefore satisfy the equigiartitheorem

L? kT
2 27
The power stored in a mode with frequenoyis

L

In equilibrium, the total power should yield

/% (1%(w)) dow = %,

therefore, for frequencies (much) smaller than those spmading to the relaxation time of the circuit,
we must have white noise analogously to the case discussee,adnd the power containes within a

frequency windowdw should be
L, _ ksT
/E (I"(w))dw = —-dw

This result is known ablyquist's theorem

13.4 General analysis of linear transport

Quite generally, fluctuations of a system from the equilibristate can be related to the transport
properties of that system. The analysis proceeds as fall&uppose we have an isoalted system,
which tends to maximise its entropy. The entropy dependsanthe energy and the particle density,
and perhaps some other quantities, are distributed in spge&an store the information concerning
these distributions in a set of numbers — you may think of tharier coefficients of the energy and/or
denisty distribution. We call these numbeyand we call the values for which the entropy assumes
its maximum.

Fluctuations correspond to deviations of thérom their equilibrium values. The corresponding
variation in the entropy can be expanded in a Taylor series:

028()~(17i27" . aiN) . S. . 5.
%, (X =%)(X—=%)+....

o - 1
S(X1,...,XN) = S(X17X27---7XN)+§ Z
I7J

The fact that the first-order term is not included is due tofdw thatS was expanded around its
maximum- hence, the first derivatives are all zero. The fact that tik@py strives to its maximum is
the driving force which causes fluctuations to dampen out.
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Recalling that
S=kgInQ,

whereQ is the number of states accessible to the system, and corghiims with the fundamental
postulate if statistical mechanics, which says that eatheasfe states is equally probable, we have for
the probability of having a state where the quantiies: x; — X; the following expression:

exp(— i Faay)

P(ag,...,an) = — | |
e JZwda - davexp(— 5 Faa)
where
1K R)
Wl 4 0% 0X; '

Note that the fact thaB has a maximum implies that the matgx has positive eigenvalues.
From this we can derive a simple expression for correlatimetions of thes;. Note that

10P_ 10s
Pda, kgda’
Taking the average on the left and right hand side with reagpeabe distributionP we obtain
JS S oP
<a.d—ai> == /dal---daN A5a = kB/dal"'daN A 3a
Integrating by parts the integral on the right hand sidedead

JS
(22)= e

Moreover, fori # | we find along the same lines:

IS
=\ =o.
<a 0aj>

You may object that the first derivative &with respect to they is zero. This is true at the
maximum, but near that maximum, we find

JS
d_a; = Zy,j a;.
Using this we rewrite the result above as
> Vic(aay) = kg dj.
]

As a; represents a fluctuation in some quantity, we can idedtifyas some kind ofurrent(below
we shall consider an example). The entropy changes in theseatfitime as

ds . 0S
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which suggests that we can interpd&/da; = X; as thedriving forcecorresponding to that current.
Now we assume a linear relationship between the foxcesd their resulting deviatiors:

: JS
J=g :zLija—aj:;Linj.

Now we consider the expectation value

(a(t+1)ay(t)) = (a(t)ay(t)) + (84 (t)ox;(t))
— <ai(t)aj (t)> +71 ; Lim <%aj (t)>
= (ai(t)aj(t)) + TLijke.

We see that the linear transport coefficiebtsare found as the correlation functions of the fluctua-
tions:

1
L =t [(ai(t+1)ay(t)) — (ai(t)ay(t))] .
From this, we see that the transport coefficients must be gtriun
Lij = Lji.

This nontrivial property follows from what is calledicroscopic reversibilityas it reflects symmetry
properties of microscopic correlation functions whichdal from the undrlying time reversal sym-
metry of the microscopic dynamics.

We can analyse further the relation betwégnand the correlator. Suppose we had in the above
derivation not multiplieds; (t + 1) with a; (t) but witha;(0). In that case, we arrive at the result:

1

=i [(a(t)aj(—T1)) —(ai(t)aj(0))]

L = % [(ai(t+1)a;(0)) — (a(t)3;(0))]

where we have used time translation symmetry.
Now we approximate finite differences by time derivatives:

1 1/t
Lij ~ —— (a&(t)4;(0 :——/ 3 ()4 (0)) dt’.
ij kB<a'()J()> Ko 0(&()1( )
If we taket much larger than the correlation time, we see that

Lij ~ —k_lB/ow (&(t")aj(0))dt'.

Recall thaty/ is the currentj;, and we see that we have found an expression for the linewepioat
coefficientL;; in terms of a time correlation function of the currents:

Lij ~ _é/om (3(t)J;(0)) dt.

How does this relate to a specific process, such as diffugtinsPwe must identify the dependence
of the entropy on the density. The parametg@re here the coordinates of the particles in the system.
We use the thermodynamic relation

1
TdS= —pdN+dE— ?.Zm'
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In this expression, the first two terms are always presenttfaalast term is used to store additional
contributions resulting from external forces. The reggitiluxes are not necessarily the fluxes which
are of interest to us. In particular, they are not spatialdipbut simply time derivatives. However,
we can derive relations for spatial fluxes through some tiekve shall now show. It is clear that for

the entropy densitg we have
ds 0Js

dt ot
wherejs is the entropy flux which tells us how much entropy flows through a wall per unéaa
For the particle density we have a similar formula, whiclyetiner with the conservation of particle
density gives

+|:|'j37

ap .
—+0-j=0.
ot T
We assume that similar conservation laws hold for the othantities occuring in the problem.

From the thermodynamic relation above, we have

os udp 10E ﬁc?_ai

T Tt Ta 2T at

Then we see, after replacing all time derivatives by the ggaite fluxes, using the conservation laws

that g L X
S__ H . AT _ _
i D(T)J+D<T>JE Z<T>J..

This is of the same form as found above provided that we intéthe quantities

H 1 (X
5(®). 2(3). o-(%)
as forces for the appropriate fluxes. We immediately sedhbadriving force for heat transport is the

gradient of ¥T, and that of particle transport is the gradient-qfi/T. Provided we do not apply a
temperature gradient to the system, we have for the drivangeffor the particle flux:

1
0.
=/l

The linear relationship between the current and this foezebe cast in the form

1~ Ou
J=—-= L ——
i T ; ij 0Xj’
wherei and j assume the values2 and 3. With the tilde “we have indicated that the transport
coefficient may deviate from the coefficient of the Onsagkatian, because the current is not a time
derivative. We use
‘Ji(r7t) = p(r7t)vi(r7t)

and the fact that any time correlation function of the cutisés dominated by the velocity time corre-
lation function. The latter is given as

<Vi (t)Vj (0)> = <V2(O)> e’t/fcij
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wheret = D, the diffusion coefficient. Integrating this over time give

U 1 D
WZ@AN@MWM=@@=@%

So we see that

v _1Dou
"7 pkeT dx’
so that
j__Dbou
' keTox’

In order to arrive at the diffusion equation, we must realimsd, for low densities,

p(p) = H(po) +ksTIn [%] ,

so that we obtain

szgg,
hence
J = DUOp.
Adding an electric term
~2V(adp(x)
to the expression for the entropy, gives us the force ongbestivith chargey in a potential:
ERE

nicely in line with our previous results.
The Onsager formulation provides an abstract framework fndnich the various forces and cur-
rents can quickly be derived.



